![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of wfr1 8367 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr1OLD.1 | ⊢ 𝑅 We 𝐴 |
wfr1OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr1OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr1OLD | ⊢ 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr1OLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfr1OLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | wfr1OLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfunOLD 8351 | . 2 ⊢ Fun 𝐹 |
5 | eqid 2726 | . . 3 ⊢ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
6 | 1, 2, 3, 5 | wfrlem16OLD 8356 | . 2 ⊢ dom 𝐹 = 𝐴 |
7 | df-fn 6559 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
8 | 4, 6, 7 | mpbir2an 709 | 1 ⊢ 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∪ cun 3945 {csn 4633 〈cop 4639 Se wse 5637 We wwe 5638 dom cdm 5684 ↾ cres 5686 Predcpred 6313 Fun wfun 6550 Fn wfn 6551 ‘cfv 6556 wrecscwrecs 8328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-po 5596 df-so 5597 df-fr 5639 df-se 5640 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-2nd 8006 df-frecs 8298 df-wrecs 8329 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |