MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr1OLD Structured version   Visualization version   GIF version

Theorem wfr1OLD 8325
Description: Obsolete version of wfr1 8333 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr1OLD.1 𝑅 We 𝐴
wfr1OLD.2 𝑅 Se 𝐴
wfr1OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr1OLD 𝐹 Fn 𝐴

Proof of Theorem wfr1OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 wfr1OLD.1 . . 3 𝑅 We 𝐴
2 wfr1OLD.2 . . 3 𝑅 Se 𝐴
3 wfr1OLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfunOLD 8317 . 2 Fun 𝐹
5 eqid 2726 . . 3 (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
61, 2, 3, 5wfrlem16OLD 8322 . 2 dom 𝐹 = 𝐴
7 df-fn 6539 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
84, 6, 7mpbir2an 708 1 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3941  {csn 4623  cop 4629   Se wse 5622   We wwe 5623  dom cdm 5669  cres 5671  Predcpred 6292  Fun wfun 6530   Fn wfn 6531  cfv 6536  wrecscwrecs 8294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-2nd 7972  df-frecs 8264  df-wrecs 8295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator