![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of wfr1 8360 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr1OLD.1 | ⊢ 𝑅 We 𝐴 |
wfr1OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr1OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr1OLD | ⊢ 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr1OLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfr1OLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | wfr1OLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfunOLD 8344 | . 2 ⊢ Fun 𝐹 |
5 | eqid 2727 | . . 3 ⊢ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) | |
6 | 1, 2, 3, 5 | wfrlem16OLD 8349 | . 2 ⊢ dom 𝐹 = 𝐴 |
7 | df-fn 6554 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
8 | 4, 6, 7 | mpbir2an 709 | 1 ⊢ 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3945 {csn 4630 ⟨cop 4636 Se wse 5633 We wwe 5634 dom cdm 5680 ↾ cres 5682 Predcpred 6307 Fun wfun 6545 Fn wfn 6546 ‘cfv 6551 wrecscwrecs 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-2nd 7998 df-frecs 8291 df-wrecs 8322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |