Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfr1OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wfr1 8166 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr1OLD.1 | ⊢ 𝑅 We 𝐴 |
wfr1OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr1OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr1OLD | ⊢ 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr1OLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfr1OLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | wfr1OLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfunOLD 8150 | . 2 ⊢ Fun 𝐹 |
5 | eqid 2738 | . . 3 ⊢ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
6 | 1, 2, 3, 5 | wfrlem16OLD 8155 | . 2 ⊢ dom 𝐹 = 𝐴 |
7 | df-fn 6436 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
8 | 4, 6, 7 | mpbir2an 708 | 1 ⊢ 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 {csn 4561 〈cop 4567 Se wse 5542 We wwe 5543 dom cdm 5589 ↾ cres 5591 Predcpred 6201 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 wrecscwrecs 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |