| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfr1OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of wfr1 8349 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| wfr1OLD.1 | ⊢ 𝑅 We 𝐴 |
| wfr1OLD.2 | ⊢ 𝑅 Se 𝐴 |
| wfr1OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfr1OLD | ⊢ 𝐹 Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfr1OLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
| 2 | wfr1OLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
| 3 | wfr1OLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 4 | 1, 2, 3 | wfrfunOLD 8333 | . 2 ⊢ Fun 𝐹 |
| 5 | eqid 2735 | . . 3 ⊢ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
| 6 | 1, 2, 3, 5 | wfrlem16OLD 8338 | . 2 ⊢ dom 𝐹 = 𝐴 |
| 7 | df-fn 6534 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 8 | 4, 6, 7 | mpbir2an 711 | 1 ⊢ 𝐹 Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 {csn 4601 〈cop 4607 Se wse 5604 We wwe 5605 dom cdm 5654 ↾ cres 5656 Predcpred 6289 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 wrecscwrecs 8310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |