MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr1OLD Structured version   Visualization version   GIF version

Theorem wfr1OLD 8352
Description: Obsolete version of wfr1 8360 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr1OLD.1 𝑅 We 𝐴
wfr1OLD.2 𝑅 Se 𝐴
wfr1OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr1OLD 𝐹 Fn 𝐴

Proof of Theorem wfr1OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 wfr1OLD.1 . . 3 𝑅 We 𝐴
2 wfr1OLD.2 . . 3 𝑅 Se 𝐴
3 wfr1OLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfunOLD 8344 . 2 Fun 𝐹
5 eqid 2727 . . 3 (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
61, 2, 3, 5wfrlem16OLD 8349 . 2 dom 𝐹 = 𝐴
7 df-fn 6554 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
84, 6, 7mpbir2an 709 1 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3945  {csn 4630  cop 4636   Se wse 5633   We wwe 5634  dom cdm 5680  cres 5682  Predcpred 6307  Fun wfun 6545   Fn wfn 6546  cfv 6551  wrecscwrecs 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-2nd 7998  df-frecs 8291  df-wrecs 8322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator