![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of wfr2 8366 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr2OLD.1 | ⊢ 𝑅 We 𝐴 |
wfr2OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr2OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2OLD | ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr2OLD.1 | . . . 4 ⊢ 𝑅 We 𝐴 | |
2 | wfr2OLD.2 | . . . 4 ⊢ 𝑅 Se 𝐴 | |
3 | wfr2OLD.3 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | eqid 2726 | . . . 4 ⊢ (𝐹 ∪ {〈𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))〉}) = (𝐹 ∪ {〈𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))〉}) | |
5 | 1, 2, 3, 4 | wfrlem16OLD 8354 | . . 3 ⊢ dom 𝐹 = 𝐴 |
6 | 5 | eleq2i 2818 | . 2 ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴) |
7 | 1, 2, 3 | wfr2aOLD 8356 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
8 | 6, 7 | sylbir 234 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 {csn 4633 〈cop 4639 Se wse 5635 We wwe 5636 dom cdm 5682 ↾ cres 5684 Predcpred 6311 ‘cfv 6554 wrecscwrecs 8326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-2nd 8004 df-frecs 8296 df-wrecs 8327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |