Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfr2OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wfr2 8138 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr2OLD.1 | ⊢ 𝑅 We 𝐴 |
wfr2OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr2OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2OLD | ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr2OLD.1 | . . . 4 ⊢ 𝑅 We 𝐴 | |
2 | wfr2OLD.2 | . . . 4 ⊢ 𝑅 Se 𝐴 | |
3 | wfr2OLD.3 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | eqid 2738 | . . . 4 ⊢ (𝐹 ∪ {〈𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))〉}) = (𝐹 ∪ {〈𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))〉}) | |
5 | 1, 2, 3, 4 | wfrlem16OLD 8126 | . . 3 ⊢ dom 𝐹 = 𝐴 |
6 | 5 | eleq2i 2830 | . 2 ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴) |
7 | 1, 2, 3 | wfr2aOLD 8128 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
8 | 6, 7 | sylbir 234 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 〈cop 4564 Se wse 5533 We wwe 5534 dom cdm 5580 ↾ cres 5582 Predcpred 6190 ‘cfv 6418 wrecscwrecs 8098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |