|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > wlkon2n0 | Structured version Visualization version GIF version | ||
| Description: The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| wlkon2n0 | ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | wlkonprop 29676 | . . . 4 ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | 
| 3 | fveqeq2 6915 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵)) | |
| 4 | 3 | anbi2d 630 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵))) | 
| 5 | eqtr2 2761 | . . . . . . . . 9 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵) | |
| 6 | nne 2944 | . . . . . . . . 9 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 7 | 5, 6 | sylibr 234 | . . . . . . . 8 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → ¬ 𝐴 ≠ 𝐵) | 
| 8 | 4, 7 | biimtrdi 253 | . . . . . . 7 ⊢ ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ¬ 𝐴 ≠ 𝐵)) | 
| 9 | 8 | com12 32 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) | 
| 10 | 9 | 3adant1 1131 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) | 
| 11 | 10 | 3ad2ant3 1136 | . . . 4 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) | 
| 12 | 2, 11 | syl 17 | . . 3 ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) | 
| 13 | 12 | necon2ad 2955 | . 2 ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐴 ≠ 𝐵 → (♯‘𝐹) ≠ 0)) | 
| 14 | 13 | imp 406 | 1 ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ♯chash 14369 Vtxcvtx 29013 Walkscwlks 29614 WalksOncwlkson 29615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-wlkson 29618 | 
| This theorem is referenced by: conngrv2edg 30214 | 
| Copyright terms: Public domain | W3C validator |