MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkon2n0 Structured version   Visualization version   GIF version

Theorem wlkon2n0 29645
Description: The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.)
Assertion
Ref Expression
wlkon2n0 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐴𝐵) → (♯‘𝐹) ≠ 0)

Proof of Theorem wlkon2n0
StepHypRef Expression
1 eqid 2733 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkonprop 29637 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3 fveqeq2 6837 . . . . . . . . 9 ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵))
43anbi2d 630 . . . . . . . 8 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵)))
5 eqtr2 2754 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵)
6 nne 2933 . . . . . . . . 9 𝐴𝐵𝐴 = 𝐵)
75, 6sylibr 234 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → ¬ 𝐴𝐵)
84, 7biimtrdi 253 . . . . . . 7 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ¬ 𝐴𝐵))
98com12 32 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → ¬ 𝐴𝐵))
1093adant1 1130 . . . . 5 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → ¬ 𝐴𝐵))
11103ad2ant3 1135 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((♯‘𝐹) = 0 → ¬ 𝐴𝐵))
122, 11syl 17 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((♯‘𝐹) = 0 → ¬ 𝐴𝐵))
1312necon2ad 2944 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐴𝐵 → (♯‘𝐹) ≠ 0))
1413imp 406 1 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐴𝐵) → (♯‘𝐹) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437   class class class wbr 5093  cfv 6486  (class class class)co 7352  0cc0 11013  chash 14239  Vtxcvtx 28976  Walkscwlks 29577  WalksOncwlkson 29578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-wlkson 29581
This theorem is referenced by:  conngrv2edg  30177
  Copyright terms: Public domain W3C validator