![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkon2n0 | Structured version Visualization version GIF version |
Description: The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.) |
Ref | Expression |
---|---|
wlkon2n0 | ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | wlkonprop 26955 | . . . 4 ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
3 | fveqeq2 6442 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵)) | |
4 | 3 | anbi2d 624 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵))) |
5 | eqtr2 2847 | . . . . . . . . 9 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵) | |
6 | nne 3003 | . . . . . . . . 9 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
7 | 5, 6 | sylibr 226 | . . . . . . . 8 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → ¬ 𝐴 ≠ 𝐵) |
8 | 4, 7 | syl6bi 245 | . . . . . . 7 ⊢ ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ¬ 𝐴 ≠ 𝐵)) |
9 | 8 | com12 32 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) |
10 | 9 | 3adant1 1166 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) |
11 | 10 | 3ad2ant3 1171 | . . . 4 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) |
12 | 2, 11 | syl 17 | . . 3 ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((♯‘𝐹) = 0 → ¬ 𝐴 ≠ 𝐵)) |
13 | 12 | necon2ad 3014 | . 2 ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐴 ≠ 𝐵 → (♯‘𝐹) ≠ 0)) |
14 | 13 | imp 397 | 1 ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 Vcvv 3414 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 0cc0 10252 ♯chash 13410 Vtxcvtx 26294 Walkscwlks 26894 WalksOncwlkson 26895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-wlks 26897 df-wlkson 26898 |
This theorem is referenced by: conngrv2edg 27571 |
Copyright terms: Public domain | W3C validator |