MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonl1iedg Structured version   Visualization version   GIF version

Theorem wlkonl1iedg 26789
Description: If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
wlkonl1iedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkonl1iedg ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
Distinct variable groups:   𝐴,𝑒   𝑒,𝐹   𝑒,𝐺   𝑒,𝐼   𝑃,𝑒
Allowed substitution hint:   𝐵(𝑒)

Proof of Theorem wlkonl1iedg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkonprop 26782 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3 fveq2 6330 . . . . . . . . . . 11 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4 oveq1 6798 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
5 0p1e1 11332 . . . . . . . . . . . . 13 (0 + 1) = 1
64, 5syl6eq 2821 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 + 1) = 1)
76fveq2d 6334 . . . . . . . . . . 11 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
83, 7preq12d 4412 . . . . . . . . . 10 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
98sseq1d 3781 . . . . . . . . 9 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘0), (𝑃‘1)} ⊆ 𝑒))
109rexbidv 3200 . . . . . . . 8 (𝑘 = 0 → (∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒))
11 wlkonl1iedg.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
1211wlkvtxiedg 26748 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
1312adantr 466 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
1413adantr 466 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
15 wlkcl 26739 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
16 elnnne0 11506 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
1716simplbi2 488 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ ℕ))
18 lbfzo0 12709 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
1917, 18syl6ibr 242 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
2015, 19syl 17 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
2120adantr 466 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
2221imp 393 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → 0 ∈ (0..^(♯‘𝐹)))
2310, 14, 22rspcdva 3466 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒)
24 fvex 6340 . . . . . . . . . . 11 (𝑃‘0) ∈ V
25 fvex 6340 . . . . . . . . . . 11 (𝑃‘1) ∈ V
2624, 25prss 4486 . . . . . . . . . 10 (((𝑃‘0) ∈ 𝑒 ∧ (𝑃‘1) ∈ 𝑒) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ 𝑒)
27 eleq1 2838 . . . . . . . . . . . . 13 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ 𝑒𝐴𝑒))
28 ax-1 6 . . . . . . . . . . . . 13 (𝐴𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒))
2927, 28syl6bi 243 . . . . . . . . . . . 12 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ 𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒)))
3029adantl 467 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((𝑃‘0) ∈ 𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒)))
3130impd 396 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → (((𝑃‘0) ∈ 𝑒 ∧ (𝑃‘1) ∈ 𝑒) → 𝐴𝑒))
3226, 31syl5bir 233 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ({(𝑃‘0), (𝑃‘1)} ⊆ 𝑒𝐴𝑒))
3332reximdv 3164 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → (∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3433adantr 466 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → (∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3523, 34mpd 15 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
3635ex 397 . . . . 5 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
37363adant3 1126 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
38373ad2ant3 1129 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
392, 38syl 17 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
4039imp 393 1 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  Vcvv 3351  wss 3723  {cpr 4318   class class class wbr 4786  ran crn 5250  cfv 6029  (class class class)co 6791  0cc0 10136  1c1 10137   + caddc 10139  cn 11220  0cn0 11492  ..^cfzo 12666  chash 13314  Vtxcvtx 26088  iEdgciedg 26089  Walkscwlks 26720  WalksOncwlkson 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-n0 11493  df-z 11578  df-uz 11887  df-fz 12527  df-fzo 12667  df-hash 13315  df-word 13488  df-wlks 26723  df-wlkson 26724
This theorem is referenced by:  conngrv2edg  27368
  Copyright terms: Public domain W3C validator