MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonl1iedg Structured version   Visualization version   GIF version

Theorem wlkonl1iedg 29453
Description: If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
wlkonl1iedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkonl1iedg ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
Distinct variable groups:   𝐴,𝑒   𝑒,𝐹   𝑒,𝐺   𝑒,𝐼   𝑃,𝑒
Allowed substitution hint:   𝐵(𝑒)

Proof of Theorem wlkonl1iedg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkonprop 29446 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3 fveq2 6891 . . . . . . . . . . 11 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4 fv0p1e1 12351 . . . . . . . . . . 11 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
53, 4preq12d 4741 . . . . . . . . . 10 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
65sseq1d 4009 . . . . . . . . 9 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘0), (𝑃‘1)} ⊆ 𝑒))
76rexbidv 3173 . . . . . . . 8 (𝑘 = 0 → (∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒))
8 wlkonl1iedg.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
98wlkvtxiedg 29413 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
109adantr 480 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
1110adantr 480 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
12 wlkcl 29403 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 elnnne0 12502 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
1413simplbi2 500 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ ℕ))
15 lbfzo0 13690 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
1614, 15imbitrrdi 251 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
1712, 16syl 17 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
1817adantr 480 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
1918imp 406 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → 0 ∈ (0..^(♯‘𝐹)))
207, 11, 19rspcdva 3608 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒)
21 fvex 6904 . . . . . . . . . . 11 (𝑃‘0) ∈ V
22 fvex 6904 . . . . . . . . . . 11 (𝑃‘1) ∈ V
2321, 22prss 4819 . . . . . . . . . 10 (((𝑃‘0) ∈ 𝑒 ∧ (𝑃‘1) ∈ 𝑒) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ 𝑒)
24 eleq1 2816 . . . . . . . . . . . . 13 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ 𝑒𝐴𝑒))
25 ax-1 6 . . . . . . . . . . . . 13 (𝐴𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒))
2624, 25biimtrdi 252 . . . . . . . . . . . 12 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ 𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒)))
2726adantl 481 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((𝑃‘0) ∈ 𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒)))
2827impd 410 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → (((𝑃‘0) ∈ 𝑒 ∧ (𝑃‘1) ∈ 𝑒) → 𝐴𝑒))
2923, 28biimtrrid 242 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ({(𝑃‘0), (𝑃‘1)} ⊆ 𝑒𝐴𝑒))
3029reximdv 3165 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → (∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3130adantr 480 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → (∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3220, 31mpd 15 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
3332ex 412 . . . . 5 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
34333adant3 1130 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
35343ad2ant3 1133 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
362, 35syl 17 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3736imp 406 1 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  wrex 3065  Vcvv 3469  wss 3944  {cpr 4626   class class class wbr 5142  ran crn 5673  cfv 6542  (class class class)co 7414  0cc0 11124  1c1 11125   + caddc 11127  cn 12228  0cn0 12488  ..^cfzo 13645  chash 14307  Vtxcvtx 28783  iEdgciedg 28784  Walkscwlks 29384  WalksOncwlkson 29385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-fzo 13646  df-hash 14308  df-word 14483  df-wlks 29387  df-wlkson 29388
This theorem is referenced by:  conngrv2edg  29979
  Copyright terms: Public domain W3C validator