MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonl1iedg Structured version   Visualization version   GIF version

Theorem wlkonl1iedg 29683
Description: If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
wlkonl1iedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkonl1iedg ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
Distinct variable groups:   𝐴,𝑒   𝑒,𝐹   𝑒,𝐺   𝑒,𝐼   𝑃,𝑒
Allowed substitution hint:   𝐵(𝑒)

Proof of Theorem wlkonl1iedg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkonprop 29676 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4 fv0p1e1 12389 . . . . . . . . . . 11 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
53, 4preq12d 4741 . . . . . . . . . 10 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
65sseq1d 4015 . . . . . . . . 9 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘0), (𝑃‘1)} ⊆ 𝑒))
76rexbidv 3179 . . . . . . . 8 (𝑘 = 0 → (∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒))
8 wlkonl1iedg.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
98wlkvtxiedg 29643 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
109adantr 480 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
1110adantr 480 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
12 wlkcl 29633 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 elnnne0 12540 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
1413simplbi2 500 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ ℕ))
15 lbfzo0 13739 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
1614, 15imbitrrdi 252 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
1712, 16syl 17 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
1817adantr 480 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((♯‘𝐹) ≠ 0 → 0 ∈ (0..^(♯‘𝐹))))
1918imp 406 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → 0 ∈ (0..^(♯‘𝐹)))
207, 11, 19rspcdva 3623 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒)
21 fvex 6919 . . . . . . . . . . 11 (𝑃‘0) ∈ V
22 fvex 6919 . . . . . . . . . . 11 (𝑃‘1) ∈ V
2321, 22prss 4820 . . . . . . . . . 10 (((𝑃‘0) ∈ 𝑒 ∧ (𝑃‘1) ∈ 𝑒) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ 𝑒)
24 eleq1 2829 . . . . . . . . . . . . 13 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ 𝑒𝐴𝑒))
25 ax-1 6 . . . . . . . . . . . . 13 (𝐴𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒))
2624, 25biimtrdi 253 . . . . . . . . . . . 12 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ 𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒)))
2726adantl 481 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((𝑃‘0) ∈ 𝑒 → ((𝑃‘1) ∈ 𝑒𝐴𝑒)))
2827impd 410 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → (((𝑃‘0) ∈ 𝑒 ∧ (𝑃‘1) ∈ 𝑒) → 𝐴𝑒))
2923, 28biimtrrid 243 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ({(𝑃‘0), (𝑃‘1)} ⊆ 𝑒𝐴𝑒))
3029reximdv 3170 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → (∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3130adantr 480 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → (∃𝑒 ∈ ran 𝐼{(𝑃‘0), (𝑃‘1)} ⊆ 𝑒 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3220, 31mpd 15 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
3332ex 412 . . . . 5 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
34333adant3 1133 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
35343ad2ant3 1136 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
362, 35syl 17 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((♯‘𝐹) ≠ 0 → ∃𝑒 ∈ ran 𝐼 𝐴𝑒))
3736imp 406 1 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  wss 3951  {cpr 4628   class class class wbr 5143  ran crn 5686  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cn 12266  0cn0 12526  ..^cfzo 13694  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  Walkscwlks 29614  WalksOncwlkson 29615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-wlks 29617  df-wlkson 29618
This theorem is referenced by:  conngrv2edg  30214
  Copyright terms: Public domain W3C validator