![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringcbasbas | Structured version Visualization version GIF version |
Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) |
Ref | Expression |
---|---|
ringcbasbas.r | β’ πΆ = (RingCatβπ) |
ringcbasbas.b | β’ π΅ = (BaseβπΆ) |
ringcbasbas.u | β’ (π β π β WUni) |
Ref | Expression |
---|---|
ringcbasbas | β’ ((π β§ π β π΅) β (Baseβπ ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasbas.r | . . . . 5 β’ πΆ = (RingCatβπ) | |
2 | ringcbasbas.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
3 | ringcbasbas.u | . . . . 5 β’ (π β π β WUni) | |
4 | 1, 2, 3 | ringcbas 20585 | . . . 4 β’ (π β π΅ = (π β© Ring)) |
5 | 4 | eleq2d 2811 | . . 3 β’ (π β (π β π΅ β π β (π β© Ring))) |
6 | elin 3956 | . . . . 5 β’ (π β (π β© Ring) β (π β π β§ π β Ring)) | |
7 | baseid 17180 | . . . . . . . . 9 β’ Base = Slot (Baseβndx) | |
8 | simpl 481 | . . . . . . . . 9 β’ ((π β WUni β§ π β π) β π β WUni) | |
9 | simpr 483 | . . . . . . . . 9 β’ ((π β WUni β§ π β π) β π β π) | |
10 | 7, 8, 9 | wunstr 17154 | . . . . . . . 8 β’ ((π β WUni β§ π β π) β (Baseβπ ) β π) |
11 | 10 | ex 411 | . . . . . . 7 β’ (π β WUni β (π β π β (Baseβπ ) β π)) |
12 | 11, 3 | syl11 33 | . . . . . 6 β’ (π β π β (π β (Baseβπ ) β π)) |
13 | 12 | adantr 479 | . . . . 5 β’ ((π β π β§ π β Ring) β (π β (Baseβπ ) β π)) |
14 | 6, 13 | sylbi 216 | . . . 4 β’ (π β (π β© Ring) β (π β (Baseβπ ) β π)) |
15 | 14 | com12 32 | . . 3 β’ (π β (π β (π β© Ring) β (Baseβπ ) β π)) |
16 | 5, 15 | sylbid 239 | . 2 β’ (π β (π β π΅ β (Baseβπ ) β π)) |
17 | 16 | imp 405 | 1 β’ ((π β§ π β π΅) β (Baseβπ ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β© cin 3939 βcfv 6542 WUnicwun 10721 ndxcnx 17159 Basecbs 17177 Ringcrg 20175 RingCatcringc 20580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-wun 10723 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-hom 17254 df-cco 17255 df-0g 17420 df-resc 17791 df-estrc 18110 df-mhm 18737 df-ghm 19170 df-mgp 20077 df-ur 20124 df-ring 20177 df-rhm 20413 df-ringc 20581 |
This theorem is referenced by: funcringcsetcALTV2lem2 47464 funcringcsetcALTV2lem3 47465 funcringcsetcALTV2lem7 47469 |
Copyright terms: Public domain | W3C validator |