Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcbasbas Structured version   Visualization version   GIF version

Theorem ringcbasbas 45084
 Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.)
Hypotheses
Ref Expression
ringcbasbas.r 𝐶 = (RingCat‘𝑈)
ringcbasbas.b 𝐵 = (Base‘𝐶)
ringcbasbas.u (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
ringcbasbas ((𝜑𝑅𝐵) → (Base‘𝑅) ∈ 𝑈)

Proof of Theorem ringcbasbas
StepHypRef Expression
1 ringcbasbas.r . . . . 5 𝐶 = (RingCat‘𝑈)
2 ringcbasbas.b . . . . 5 𝐵 = (Base‘𝐶)
3 ringcbasbas.u . . . . 5 (𝜑𝑈 ∈ WUni)
41, 2, 3ringcbas 45061 . . . 4 (𝜑𝐵 = (𝑈 ∩ Ring))
54eleq2d 2837 . . 3 (𝜑 → (𝑅𝐵𝑅 ∈ (𝑈 ∩ Ring)))
6 elin 3876 . . . . 5 (𝑅 ∈ (𝑈 ∩ Ring) ↔ (𝑅𝑈𝑅 ∈ Ring))
7 df-base 16561 . . . . . . . . 9 Base = Slot 1
8 simpl 486 . . . . . . . . 9 ((𝑈 ∈ WUni ∧ 𝑅𝑈) → 𝑈 ∈ WUni)
9 simpr 488 . . . . . . . . 9 ((𝑈 ∈ WUni ∧ 𝑅𝑈) → 𝑅𝑈)
107, 8, 9wunstr 16579 . . . . . . . 8 ((𝑈 ∈ WUni ∧ 𝑅𝑈) → (Base‘𝑅) ∈ 𝑈)
1110ex 416 . . . . . . 7 (𝑈 ∈ WUni → (𝑅𝑈 → (Base‘𝑅) ∈ 𝑈))
1211, 3syl11 33 . . . . . 6 (𝑅𝑈 → (𝜑 → (Base‘𝑅) ∈ 𝑈))
1312adantr 484 . . . . 5 ((𝑅𝑈𝑅 ∈ Ring) → (𝜑 → (Base‘𝑅) ∈ 𝑈))
146, 13sylbi 220 . . . 4 (𝑅 ∈ (𝑈 ∩ Ring) → (𝜑 → (Base‘𝑅) ∈ 𝑈))
1514com12 32 . . 3 (𝜑 → (𝑅 ∈ (𝑈 ∩ Ring) → (Base‘𝑅) ∈ 𝑈))
165, 15sylbid 243 . 2 (𝜑 → (𝑅𝐵 → (Base‘𝑅) ∈ 𝑈))
1716imp 410 1 ((𝜑𝑅𝐵) → (Base‘𝑅) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∩ cin 3859  ‘cfv 6340  WUnicwun 10173  1c1 10589  Basecbs 16555  Ringcrg 19379  RingCatcringc 45053 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-wun 10175  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-hom 16661  df-cco 16662  df-0g 16787  df-resc 17154  df-estrc 17453  df-mhm 18036  df-ghm 18437  df-mgp 19322  df-ur 19334  df-ring 19381  df-rnghom 19552  df-ringc 45055 This theorem is referenced by:  funcringcsetcALTV2lem2  45087  funcringcsetcALTV2lem3  45088  funcringcsetcALTV2lem7  45092
 Copyright terms: Public domain W3C validator