![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcbasbas | Structured version Visualization version GIF version |
Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) |
Ref | Expression |
---|---|
ringcbasbas.r | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcbasbas.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcbasbas.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
ringcbasbas | ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasbas.r | . . . . 5 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | ringcbasbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
3 | ringcbasbas.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
4 | 1, 2, 3 | ringcbas 42799 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
5 | 4 | eleq2d 2863 | . . 3 ⊢ (𝜑 → (𝑅 ∈ 𝐵 ↔ 𝑅 ∈ (𝑈 ∩ Ring))) |
6 | elin 3993 | . . . . 5 ⊢ (𝑅 ∈ (𝑈 ∩ Ring) ↔ (𝑅 ∈ 𝑈 ∧ 𝑅 ∈ Ring)) | |
7 | df-base 16187 | . . . . . . . . 9 ⊢ Base = Slot 1 | |
8 | simpl 475 | . . . . . . . . 9 ⊢ ((𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈) → 𝑈 ∈ WUni) | |
9 | simpr 478 | . . . . . . . . 9 ⊢ ((𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈) → 𝑅 ∈ 𝑈) | |
10 | 7, 8, 9 | wunstr 16205 | . . . . . . . 8 ⊢ ((𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈) → (Base‘𝑅) ∈ 𝑈) |
11 | 10 | ex 402 | . . . . . . 7 ⊢ (𝑈 ∈ WUni → (𝑅 ∈ 𝑈 → (Base‘𝑅) ∈ 𝑈)) |
12 | 11, 3 | syl11 33 | . . . . . 6 ⊢ (𝑅 ∈ 𝑈 → (𝜑 → (Base‘𝑅) ∈ 𝑈)) |
13 | 12 | adantr 473 | . . . . 5 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑅 ∈ Ring) → (𝜑 → (Base‘𝑅) ∈ 𝑈)) |
14 | 6, 13 | sylbi 209 | . . . 4 ⊢ (𝑅 ∈ (𝑈 ∩ Ring) → (𝜑 → (Base‘𝑅) ∈ 𝑈)) |
15 | 14 | com12 32 | . . 3 ⊢ (𝜑 → (𝑅 ∈ (𝑈 ∩ Ring) → (Base‘𝑅) ∈ 𝑈)) |
16 | 5, 15 | sylbid 232 | . 2 ⊢ (𝜑 → (𝑅 ∈ 𝐵 → (Base‘𝑅) ∈ 𝑈)) |
17 | 16 | imp 396 | 1 ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∩ cin 3767 ‘cfv 6100 WUnicwun 9809 1c1 10224 Basecbs 16181 Ringcrg 18860 RingCatcringc 42791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-int 4667 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-oadd 7802 df-er 7981 df-map 8096 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-wun 9811 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-z 11664 df-dec 11781 df-uz 11928 df-fz 12578 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-hom 16288 df-cco 16289 df-0g 16414 df-resc 16782 df-estrc 17074 df-mhm 17647 df-ghm 17968 df-mgp 18803 df-ur 18815 df-ring 18862 df-rnghom 19030 df-ringc 42793 |
This theorem is referenced by: funcringcsetcALTV2lem2 42825 funcringcsetcALTV2lem3 42826 funcringcsetcALTV2lem7 42830 |
Copyright terms: Public domain | W3C validator |