Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xreqnltd | Structured version Visualization version GIF version |
Description: A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
xreqnltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xreqnltd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xreqnltd | ⊢ (𝜑 → ¬ 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xreqnltd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xreqnltd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | 1, 2 | eqeltrrd 2838 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
4 | xrlttri3 12970 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
6 | 1, 5 | mpbid 231 | . 2 ⊢ (𝜑 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
7 | 6 | simpld 495 | 1 ⊢ (𝜑 → ¬ 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ℝ*cxr 11101 < clt 11102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-pre-lttri 11038 ax-pre-lttrn 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 |
This theorem is referenced by: limsuppnflem 43576 |
Copyright terms: Public domain | W3C validator |