| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltdiv23neg | Structured version Visualization version GIF version | ||
| Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ltdiv23neg.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltdiv23neg.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltdiv23neg.3 | ⊢ (𝜑 → 𝐵 < 0) |
| ltdiv23neg.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltdiv23neg.5 | ⊢ (𝜑 → 𝐶 < 0) |
| Ref | Expression |
|---|---|
| ltdiv23neg | ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltdiv23neg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltdiv23neg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ltdiv23neg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 < 0) | |
| 4 | 2, 3 | ltned 11376 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 5 | 1, 2, 4 | redivcld 12074 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | ltdiv23neg.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 7 | 5, 6, 2, 3 | ltmulneg 45386 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵))) |
| 8 | recn 11224 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | recn 11224 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 12 | 9, 11, 4 | divcan1d 12023 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| 13 | 12 | breq2d 5136 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴)) |
| 14 | remulcl 11219 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
| 15 | 6, 2, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
| 16 | ltdiv23neg.5 | . . . . . 6 ⊢ (𝜑 → 𝐶 < 0) | |
| 17 | 6, 16 | ltned 11376 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 18 | 6, 17 | rereccld 12073 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ) |
| 19 | 6, 16 | reclt0d 45381 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) < 0) |
| 20 | 15, 1, 18, 19 | ltmulneg 45386 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)))) |
| 21 | recn 11224 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
| 22 | 6, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 23 | 9, 22, 17 | divrecd 12025 | . . . . 5 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
| 24 | 23 | eqcomd 2742 | . . . 4 ⊢ (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶)) |
| 25 | 22, 11 | mulcld 11260 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
| 26 | 25, 22, 17 | divrecd 12025 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶))) |
| 27 | divcan3 11927 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | |
| 28 | 27 | 3expb 1120 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
| 29 | 11, 22, 17, 28 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
| 30 | 26, 29 | eqtr3d 2773 | . . . 4 ⊢ (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵) |
| 31 | 24, 30 | breq12d 5137 | . . 3 ⊢ (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵)) |
| 32 | 20, 31 | bitrd 279 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵)) |
| 33 | 7, 13, 32 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 · cmul 11139 < clt 11274 / cdiv 11899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-rp 13014 |
| This theorem is referenced by: pimrecltneg 46720 |
| Copyright terms: Public domain | W3C validator |