Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltdiv23neg Structured version   Visualization version   GIF version

Theorem ltdiv23neg 45405
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltdiv23neg.1 (𝜑𝐴 ∈ ℝ)
ltdiv23neg.2 (𝜑𝐵 ∈ ℝ)
ltdiv23neg.3 (𝜑𝐵 < 0)
ltdiv23neg.4 (𝜑𝐶 ∈ ℝ)
ltdiv23neg.5 (𝜑𝐶 < 0)
Assertion
Ref Expression
ltdiv23neg (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))

Proof of Theorem ltdiv23neg
StepHypRef Expression
1 ltdiv23neg.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ltdiv23neg.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ltdiv23neg.3 . . . . 5 (𝜑𝐵 < 0)
42, 3ltned 11397 . . . 4 (𝜑𝐵 ≠ 0)
51, 2, 4redivcld 12095 . . 3 (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
6 ltdiv23neg.4 . . 3 (𝜑𝐶 ∈ ℝ)
75, 6, 2, 3ltmulneg 45403 . 2 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵)))
8 recn 11245 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91, 8syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
10 recn 11245 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
112, 10syl 17 . . . 4 (𝜑𝐵 ∈ ℂ)
129, 11, 4divcan1d 12044 . . 3 (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1312breq2d 5155 . 2 (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴))
14 remulcl 11240 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
156, 2, 14syl2anc 584 . . . 4 (𝜑 → (𝐶 · 𝐵) ∈ ℝ)
16 ltdiv23neg.5 . . . . . 6 (𝜑𝐶 < 0)
176, 16ltned 11397 . . . . 5 (𝜑𝐶 ≠ 0)
186, 17rereccld 12094 . . . 4 (𝜑 → (1 / 𝐶) ∈ ℝ)
196, 16reclt0d 45398 . . . 4 (𝜑 → (1 / 𝐶) < 0)
2015, 1, 18, 19ltmulneg 45403 . . 3 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶))))
21 recn 11245 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
226, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ ℂ)
239, 22, 17divrecd 12046 . . . . 5 (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
2423eqcomd 2743 . . . 4 (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶))
2522, 11mulcld 11281 . . . . . 6 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
2625, 22, 17divrecd 12046 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶)))
27 divcan3 11948 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
28273expb 1121 . . . . . 6 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
2911, 22, 17, 28syl12anc 837 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
3026, 29eqtr3d 2779 . . . 4 (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵)
3124, 30breq12d 5156 . . 3 (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵))
3220, 31bitrd 279 . 2 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵))
337, 13, 323bitrd 305 1 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-rp 13035
This theorem is referenced by:  pimrecltneg  46739
  Copyright terms: Public domain W3C validator