Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltdiv23neg | Structured version Visualization version GIF version |
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltdiv23neg.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23neg.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltdiv23neg.3 | ⊢ (𝜑 → 𝐵 < 0) |
ltdiv23neg.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltdiv23neg.5 | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltdiv23neg | ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23neg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltdiv23neg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltdiv23neg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 < 0) | |
4 | 2, 3 | ltned 11191 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
5 | 1, 2, 4 | redivcld 11883 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | ltdiv23neg.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
7 | 5, 6, 2, 3 | ltmulneg 43181 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵))) |
8 | recn 11041 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | recn 11041 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 9, 11, 4 | divcan1d 11832 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
13 | 12 | breq2d 5099 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴)) |
14 | remulcl 11036 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
15 | 6, 2, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
16 | ltdiv23neg.5 | . . . . . 6 ⊢ (𝜑 → 𝐶 < 0) | |
17 | 6, 16 | ltned 11191 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
18 | 6, 17 | rereccld 11882 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ) |
19 | 6, 16 | reclt0d 43175 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) < 0) |
20 | 15, 1, 18, 19 | ltmulneg 43181 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)))) |
21 | recn 11041 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
22 | 6, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
23 | 9, 22, 17 | divrecd 11834 | . . . . 5 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
24 | 23 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶)) |
25 | 22, 11 | mulcld 11075 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
26 | 25, 22, 17 | divrecd 11834 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶))) |
27 | divcan3 11739 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | |
28 | 27 | 3expb 1119 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
29 | 11, 22, 17, 28 | syl12anc 834 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
30 | 26, 29 | eqtr3d 2779 | . . . 4 ⊢ (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵) |
31 | 24, 30 | breq12d 5100 | . . 3 ⊢ (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵)) |
32 | 20, 31 | bitrd 278 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵)) |
33 | 7, 13, 32 | 3bitrd 304 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 class class class wbr 5087 (class class class)co 7317 ℂcc 10949 ℝcr 10950 0cc0 10951 1c1 10952 · cmul 10956 < clt 11089 / cdiv 11712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-rp 12811 |
This theorem is referenced by: pimrecltneg 44513 |
Copyright terms: Public domain | W3C validator |