Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltdiv23neg Structured version   Visualization version   GIF version

Theorem ltdiv23neg 43183
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltdiv23neg.1 (𝜑𝐴 ∈ ℝ)
ltdiv23neg.2 (𝜑𝐵 ∈ ℝ)
ltdiv23neg.3 (𝜑𝐵 < 0)
ltdiv23neg.4 (𝜑𝐶 ∈ ℝ)
ltdiv23neg.5 (𝜑𝐶 < 0)
Assertion
Ref Expression
ltdiv23neg (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))

Proof of Theorem ltdiv23neg
StepHypRef Expression
1 ltdiv23neg.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ltdiv23neg.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ltdiv23neg.3 . . . . 5 (𝜑𝐵 < 0)
42, 3ltned 11191 . . . 4 (𝜑𝐵 ≠ 0)
51, 2, 4redivcld 11883 . . 3 (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
6 ltdiv23neg.4 . . 3 (𝜑𝐶 ∈ ℝ)
75, 6, 2, 3ltmulneg 43181 . 2 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵)))
8 recn 11041 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91, 8syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
10 recn 11041 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
112, 10syl 17 . . . 4 (𝜑𝐵 ∈ ℂ)
129, 11, 4divcan1d 11832 . . 3 (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1312breq2d 5099 . 2 (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴))
14 remulcl 11036 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
156, 2, 14syl2anc 584 . . . 4 (𝜑 → (𝐶 · 𝐵) ∈ ℝ)
16 ltdiv23neg.5 . . . . . 6 (𝜑𝐶 < 0)
176, 16ltned 11191 . . . . 5 (𝜑𝐶 ≠ 0)
186, 17rereccld 11882 . . . 4 (𝜑 → (1 / 𝐶) ∈ ℝ)
196, 16reclt0d 43175 . . . 4 (𝜑 → (1 / 𝐶) < 0)
2015, 1, 18, 19ltmulneg 43181 . . 3 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶))))
21 recn 11041 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
226, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ ℂ)
239, 22, 17divrecd 11834 . . . . 5 (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
2423eqcomd 2743 . . . 4 (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶))
2522, 11mulcld 11075 . . . . . 6 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
2625, 22, 17divrecd 11834 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶)))
27 divcan3 11739 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
28273expb 1119 . . . . . 6 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
2911, 22, 17, 28syl12anc 834 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
3026, 29eqtr3d 2779 . . . 4 (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵)
3124, 30breq12d 5100 . . 3 (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵))
3220, 31bitrd 278 . 2 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵))
337, 13, 323bitrd 304 1 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wne 2941   class class class wbr 5087  (class class class)co 7317  cc 10949  cr 10950  0cc0 10951  1c1 10952   · cmul 10956   < clt 11089   / cdiv 11712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-rp 12811
This theorem is referenced by:  pimrecltneg  44513
  Copyright terms: Public domain W3C validator