![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltdiv23neg | Structured version Visualization version GIF version |
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltdiv23neg.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23neg.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltdiv23neg.3 | ⊢ (𝜑 → 𝐵 < 0) |
ltdiv23neg.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltdiv23neg.5 | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltdiv23neg | ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23neg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltdiv23neg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltdiv23neg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 < 0) | |
4 | 2, 3 | ltned 11426 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
5 | 1, 2, 4 | redivcld 12122 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | ltdiv23neg.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
7 | 5, 6, 2, 3 | ltmulneg 45307 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵))) |
8 | recn 11274 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | recn 11274 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 9, 11, 4 | divcan1d 12071 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
13 | 12 | breq2d 5178 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴)) |
14 | remulcl 11269 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
15 | 6, 2, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
16 | ltdiv23neg.5 | . . . . . 6 ⊢ (𝜑 → 𝐶 < 0) | |
17 | 6, 16 | ltned 11426 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
18 | 6, 17 | rereccld 12121 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ) |
19 | 6, 16 | reclt0d 45302 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) < 0) |
20 | 15, 1, 18, 19 | ltmulneg 45307 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)))) |
21 | recn 11274 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
22 | 6, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
23 | 9, 22, 17 | divrecd 12073 | . . . . 5 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
24 | 23 | eqcomd 2746 | . . . 4 ⊢ (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶)) |
25 | 22, 11 | mulcld 11310 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
26 | 25, 22, 17 | divrecd 12073 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶))) |
27 | divcan3 11975 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | |
28 | 27 | 3expb 1120 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
29 | 11, 22, 17, 28 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
30 | 26, 29 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵) |
31 | 24, 30 | breq12d 5179 | . . 3 ⊢ (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵)) |
32 | 20, 31 | bitrd 279 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵)) |
33 | 7, 13, 32 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 < clt 11324 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-rp 13058 |
This theorem is referenced by: pimrecltneg 46645 |
Copyright terms: Public domain | W3C validator |