Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltdiv23neg Structured version   Visualization version   GIF version

Theorem ltdiv23neg 41102
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltdiv23neg.1 (𝜑𝐴 ∈ ℝ)
ltdiv23neg.2 (𝜑𝐵 ∈ ℝ)
ltdiv23neg.3 (𝜑𝐵 < 0)
ltdiv23neg.4 (𝜑𝐶 ∈ ℝ)
ltdiv23neg.5 (𝜑𝐶 < 0)
Assertion
Ref Expression
ltdiv23neg (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))

Proof of Theorem ltdiv23neg
StepHypRef Expression
1 ltdiv23neg.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ltdiv23neg.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ltdiv23neg.3 . . . . 5 (𝜑𝐵 < 0)
42, 3ltned 10576 . . . 4 (𝜑𝐵 ≠ 0)
51, 2, 4redivcld 11269 . . 3 (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
6 ltdiv23neg.4 . . 3 (𝜑𝐶 ∈ ℝ)
75, 6, 2, 3ltmulneg 41100 . 2 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵)))
8 recn 10425 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91, 8syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
10 recn 10425 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
112, 10syl 17 . . . 4 (𝜑𝐵 ∈ ℂ)
129, 11, 4divcan1d 11218 . . 3 (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1312breq2d 4941 . 2 (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴))
14 remulcl 10420 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
156, 2, 14syl2anc 576 . . . 4 (𝜑 → (𝐶 · 𝐵) ∈ ℝ)
16 ltdiv23neg.5 . . . . . 6 (𝜑𝐶 < 0)
176, 16ltned 10576 . . . . 5 (𝜑𝐶 ≠ 0)
186, 17rereccld 11268 . . . 4 (𝜑 → (1 / 𝐶) ∈ ℝ)
196, 16reclt0d 41094 . . . 4 (𝜑 → (1 / 𝐶) < 0)
2015, 1, 18, 19ltmulneg 41100 . . 3 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶))))
21 recn 10425 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
226, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ ℂ)
239, 22, 17divrecd 11220 . . . . 5 (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
2423eqcomd 2784 . . . 4 (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶))
2522, 11mulcld 10460 . . . . . 6 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
2625, 22, 17divrecd 11220 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶)))
27 divcan3 11125 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
28273expb 1100 . . . . . 6 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
2911, 22, 17, 28syl12anc 824 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
3026, 29eqtr3d 2816 . . . 4 (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵)
3124, 30breq12d 4942 . . 3 (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵))
3220, 31bitrd 271 . 2 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵))
337, 13, 323bitrd 297 1 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wne 2967   class class class wbr 4929  (class class class)co 6976  cc 10333  cr 10334  0cc0 10335  1c1 10336   · cmul 10340   < clt 10474   / cdiv 11098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-rp 12205
This theorem is referenced by:  pimrecltneg  42438
  Copyright terms: Public domain W3C validator