Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subadd4b Structured version   Visualization version   GIF version

Theorem subadd4b 44443
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
subadd4b.1 (𝜑𝐴 ∈ ℂ)
subadd4b.2 (𝜑𝐵 ∈ ℂ)
subadd4b.3 (𝜑𝐶 ∈ ℂ)
subadd4b.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
subadd4b (𝜑 → ((𝐴𝐵) + (𝐶𝐷)) = ((𝐴𝐷) + (𝐶𝐵)))

Proof of Theorem subadd4b
StepHypRef Expression
1 subadd4b.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 subadd4b.2 . . 3 (𝜑𝐵 ∈ ℂ)
3 subadd4b.4 . . 3 (𝜑𝐷 ∈ ℂ)
4 subadd4b.3 . . 3 (𝜑𝐶 ∈ ℂ)
51, 2, 3, 4subadd4d 11615 . 2 (𝜑 → ((𝐴𝐵) − (𝐷𝐶)) = ((𝐴 + 𝐶) − (𝐵 + 𝐷)))
61, 2subcld 11567 . . 3 (𝜑 → (𝐴𝐵) ∈ ℂ)
76, 3, 4subsub2d 11596 . 2 (𝜑 → ((𝐴𝐵) − (𝐷𝐶)) = ((𝐴𝐵) + (𝐶𝐷)))
82, 3addcomd 11412 . . . 4 (𝜑 → (𝐵 + 𝐷) = (𝐷 + 𝐵))
98oveq2d 7417 . . 3 (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐷)) = ((𝐴 + 𝐶) − (𝐷 + 𝐵)))
101, 4, 3, 2addsub4d 11614 . . 3 (𝜑 → ((𝐴 + 𝐶) − (𝐷 + 𝐵)) = ((𝐴𝐷) + (𝐶𝐵)))
119, 10eqtrd 2764 . 2 (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐷)) = ((𝐴𝐷) + (𝐶𝐵)))
125, 7, 113eqtr3d 2772 1 (𝜑 → ((𝐴𝐵) + (𝐶𝐷)) = ((𝐴𝐷) + (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  (class class class)co 7401  cc 11103   + caddc 11108  cmin 11440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442
This theorem is referenced by:  fourierdlem42  45316  fourierdlem107  45380
  Copyright terms: Public domain W3C validator