Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subadd4b | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
subadd4b.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subadd4b.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subadd4b.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
subadd4b.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
subadd4b | ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subadd4b.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | subadd4b.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subadd4b.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
4 | subadd4b.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 1, 2, 3, 4 | subadd4d 11490 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐷 − 𝐶)) = ((𝐴 + 𝐶) − (𝐵 + 𝐷))) |
6 | 1, 2 | subcld 11442 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
7 | 6, 3, 4 | subsub2d 11471 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐷 − 𝐶)) = ((𝐴 − 𝐵) + (𝐶 − 𝐷))) |
8 | 2, 3 | addcomd 11287 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐷) = (𝐷 + 𝐵)) |
9 | 8 | oveq2d 7362 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐷)) = ((𝐴 + 𝐶) − (𝐷 + 𝐵))) |
10 | 1, 4, 3, 2 | addsub4d 11489 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐷 + 𝐵)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
11 | 9, 10 | eqtrd 2777 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
12 | 5, 7, 11 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 (class class class)co 7346 ℂcc 10979 + caddc 10984 − cmin 11315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-po 5539 df-so 5540 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-ltxr 11124 df-sub 11317 |
This theorem is referenced by: fourierdlem42 44078 fourierdlem107 44142 |
Copyright terms: Public domain | W3C validator |