![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subadd4b | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
subadd4b.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subadd4b.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subadd4b.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
subadd4b.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
subadd4b | ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subadd4b.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | subadd4b.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subadd4b.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
4 | subadd4b.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 1, 2, 3, 4 | subadd4d 11615 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐷 − 𝐶)) = ((𝐴 + 𝐶) − (𝐵 + 𝐷))) |
6 | 1, 2 | subcld 11567 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
7 | 6, 3, 4 | subsub2d 11596 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐷 − 𝐶)) = ((𝐴 − 𝐵) + (𝐶 − 𝐷))) |
8 | 2, 3 | addcomd 11412 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐷) = (𝐷 + 𝐵)) |
9 | 8 | oveq2d 7417 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐷)) = ((𝐴 + 𝐶) − (𝐷 + 𝐵))) |
10 | 1, 4, 3, 2 | addsub4d 11614 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐷 + 𝐵)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
11 | 9, 10 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
12 | 5, 7, 11 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 (class class class)co 7401 ℂcc 11103 + caddc 11108 − cmin 11440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 |
This theorem is referenced by: fourierdlem42 45316 fourierdlem107 45380 |
Copyright terms: Public domain | W3C validator |