| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lttri5d | Structured version Visualization version GIF version | ||
| Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| lttri5d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lttri5d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lttri5d.aneb | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| lttri5d.nlt | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| lttri5d | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri5d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11283 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | lttri5d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | rexrd 11283 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 5 | lttri5d.aneb | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 6 | lttri5d.nlt | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 7 | 2, 4, 5, 6 | xrlttri5d 45260 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ℝcr 11126 < clt 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 |
| This theorem is referenced by: reclt0 45366 limcleqr 45621 ioodvbdlimc1lem1 45908 fourierdlem34 46118 fourierdlem35 46119 fourierdlem43 46127 fourierdlem44 46128 fourierdlem74 46157 fourierdlem109 46192 fouriersw 46208 pimrecltpos 46685 smfrec 46766 |
| Copyright terms: Public domain | W3C validator |