Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lttri5d Structured version   Visualization version   GIF version

Theorem lttri5d 45249
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lttri5d.a (𝜑𝐴 ∈ ℝ)
lttri5d.b (𝜑𝐵 ∈ ℝ)
lttri5d.aneb (𝜑𝐴𝐵)
lttri5d.nlt (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
lttri5d (𝜑𝐴 < 𝐵)

Proof of Theorem lttri5d
StepHypRef Expression
1 lttri5d.a . . 3 (𝜑𝐴 ∈ ℝ)
21rexrd 11308 . 2 (𝜑𝐴 ∈ ℝ*)
3 lttri5d.b . . 3 (𝜑𝐵 ∈ ℝ)
43rexrd 11308 . 2 (𝜑𝐵 ∈ ℝ*)
5 lttri5d.aneb . 2 (𝜑𝐴𝐵)
6 lttri5d.nlt . 2 (𝜑 → ¬ 𝐵 < 𝐴)
72, 4, 5, 6xrlttri5d 45233 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105  wne 2937   class class class wbr 5147  cr 11151   < clt 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297
This theorem is referenced by:  reclt0  45340  limcleqr  45599  ioodvbdlimc1lem1  45886  fourierdlem34  46096  fourierdlem35  46097  fourierdlem43  46105  fourierdlem44  46106  fourierdlem74  46135  fourierdlem109  46170  fouriersw  46186  pimrecltpos  46663  smfrec  46744
  Copyright terms: Public domain W3C validator