Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lttri5d Structured version   Visualization version   GIF version

Theorem lttri5d 45214
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lttri5d.a (𝜑𝐴 ∈ ℝ)
lttri5d.b (𝜑𝐵 ∈ ℝ)
lttri5d.aneb (𝜑𝐴𝐵)
lttri5d.nlt (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
lttri5d (𝜑𝐴 < 𝐵)

Proof of Theorem lttri5d
StepHypRef Expression
1 lttri5d.a . . 3 (𝜑𝐴 ∈ ℝ)
21rexrd 11340 . 2 (𝜑𝐴 ∈ ℝ*)
3 lttri5d.b . . 3 (𝜑𝐵 ∈ ℝ)
43rexrd 11340 . 2 (𝜑𝐵 ∈ ℝ*)
5 lttri5d.aneb . 2 (𝜑𝐴𝐵)
6 lttri5d.nlt . 2 (𝜑 → ¬ 𝐵 < 𝐴)
72, 4, 5, 6xrlttri5d 45198 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wne 2946   class class class wbr 5166  cr 11183   < clt 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329
This theorem is referenced by:  reclt0  45306  limcleqr  45565  ioodvbdlimc1lem1  45852  fourierdlem34  46062  fourierdlem35  46063  fourierdlem43  46071  fourierdlem44  46072  fourierdlem74  46101  fourierdlem109  46136  fouriersw  46152  pimrecltpos  46629  smfrec  46710
  Copyright terms: Public domain W3C validator