Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuzfz Structured version   Visualization version   GIF version

Theorem ssuzfz 45338
Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ssuzfz.1 𝑍 = (ℤ𝑀)
ssuzfz.2 (𝜑𝐴𝑍)
ssuzfz.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ssuzfz (𝜑𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))

Proof of Theorem ssuzfz
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssuzfz.2 . . . . . . . 8 (𝜑𝐴𝑍)
21sselda 3943 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑍)
3 ssuzfz.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2838 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
5 eluzel2 12774 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑀 ∈ ℤ)
7 uzssz 12790 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
83, 7eqsstri 3990 . . . . . . . . 9 𝑍 ⊆ ℤ
98a1i 11 . . . . . . . 8 (𝜑𝑍 ⊆ ℤ)
101, 9sstrd 3954 . . . . . . 7 (𝜑𝐴 ⊆ ℤ)
1110adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 𝐴 ⊆ ℤ)
12 ne0i 4300 . . . . . . . 8 (𝑘𝐴𝐴 ≠ ∅)
1312adantl 481 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐴 ≠ ∅)
14 ssuzfz.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
1514adantr 480 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐴 ∈ Fin)
16 suprfinzcl 12624 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
1711, 13, 15, 16syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴)
1811, 17sseldd 3944 . . . . 5 ((𝜑𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
1910sselda 3943 . . . . 5 ((𝜑𝑘𝐴) → 𝑘 ∈ ℤ)
20 eluzle 12782 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
214, 20syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑀𝑘)
22 zssre 12512 . . . . . . . . 9 ℤ ⊆ ℝ
2322a1i 11 . . . . . . . 8 (𝜑 → ℤ ⊆ ℝ)
2410, 23sstrd 3954 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
2524adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 𝐴 ⊆ ℝ)
26 simpr 484 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝐴)
27 eqidd 2730 . . . . . 6 ((𝜑𝑘𝐴) → sup(𝐴, ℝ, < ) = sup(𝐴, ℝ, < ))
2825, 15, 26, 27supfirege 12146 . . . . 5 ((𝜑𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
296, 18, 19, 21, 28elfzd 13452 . . . 4 ((𝜑𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3029ex 412 . . 3 (𝜑 → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3130ralrimiv 3124 . 2 (𝜑 → ∀𝑘𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
32 dfss3 3932 . 2 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑘𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3331, 32sylibr 234 1 (𝜑𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3911  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  supcsup 9367  cr 11043   < clt 11184  cle 11185  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  sge0isum  46418
  Copyright terms: Public domain W3C validator