Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuzfz Structured version   Visualization version   GIF version

Theorem ssuzfz 44544
Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ssuzfz.1 𝑍 = (ℤ𝑀)
ssuzfz.2 (𝜑𝐴𝑍)
ssuzfz.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ssuzfz (𝜑𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))

Proof of Theorem ssuzfz
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssuzfz.2 . . . . . . . 8 (𝜑𝐴𝑍)
21sselda 3974 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑍)
3 ssuzfz.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2835 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
5 eluzel2 12824 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑀 ∈ ℤ)
7 uzssz 12840 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
83, 7eqsstri 4008 . . . . . . . . 9 𝑍 ⊆ ℤ
98a1i 11 . . . . . . . 8 (𝜑𝑍 ⊆ ℤ)
101, 9sstrd 3984 . . . . . . 7 (𝜑𝐴 ⊆ ℤ)
1110adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 𝐴 ⊆ ℤ)
12 ne0i 4326 . . . . . . . 8 (𝑘𝐴𝐴 ≠ ∅)
1312adantl 481 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐴 ≠ ∅)
14 ssuzfz.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
1514adantr 480 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐴 ∈ Fin)
16 suprfinzcl 12673 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
1711, 13, 15, 16syl3anc 1368 . . . . . 6 ((𝜑𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴)
1811, 17sseldd 3975 . . . . 5 ((𝜑𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
1910sselda 3974 . . . . 5 ((𝜑𝑘𝐴) → 𝑘 ∈ ℤ)
20 eluzle 12832 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
214, 20syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑀𝑘)
22 zssre 12562 . . . . . . . . 9 ℤ ⊆ ℝ
2322a1i 11 . . . . . . . 8 (𝜑 → ℤ ⊆ ℝ)
2410, 23sstrd 3984 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
2524adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 𝐴 ⊆ ℝ)
26 simpr 484 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝐴)
27 eqidd 2725 . . . . . 6 ((𝜑𝑘𝐴) → sup(𝐴, ℝ, < ) = sup(𝐴, ℝ, < ))
2825, 15, 26, 27supfirege 12198 . . . . 5 ((𝜑𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
296, 18, 19, 21, 28elfzd 13489 . . . 4 ((𝜑𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3029ex 412 . . 3 (𝜑 → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3130ralrimiv 3137 . 2 (𝜑 → ∀𝑘𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
32 dfss3 3962 . 2 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑘𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3331, 32sylibr 233 1 (𝜑𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  wss 3940  c0 4314   class class class wbr 5138  cfv 6533  (class class class)co 7401  Fincfn 8935  supcsup 9431  cr 11105   < clt 11245  cle 11246  cz 12555  cuz 12819  ...cfz 13481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482
This theorem is referenced by:  sge0isum  45628
  Copyright terms: Public domain W3C validator