| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuzfz | Structured version Visualization version GIF version | ||
| Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ssuzfz.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ssuzfz.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
| ssuzfz.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| ssuzfz | ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssuzfz.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
| 2 | 1 | sselda 3963 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
| 3 | ssuzfz.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrdi 2845 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 5 | eluzel2 12862 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 7 | uzssz 12878 | . . . . . . . . . 10 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 8 | 3, 7 | eqsstri 4010 | . . . . . . . . 9 ⊢ 𝑍 ⊆ ℤ |
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 ⊆ ℤ) |
| 10 | 1, 9 | sstrd 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆ ℤ) |
| 12 | ne0i 4321 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ≠ ∅) |
| 14 | ssuzfz.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 16 | suprfinzcl 12712 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) | |
| 17 | 11, 13, 15, 16 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 18 | 11, 17 | sseldd 3964 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ) |
| 19 | 10 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℤ) |
| 20 | eluzle 12870 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) | |
| 21 | 4, 20 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝑘) |
| 22 | zssre 12600 | . . . . . . . . 9 ⊢ ℤ ⊆ ℝ | |
| 23 | 22 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℤ ⊆ ℝ) |
| 24 | 10, 23 | sstrd 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 26 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
| 27 | eqidd 2737 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )) | |
| 28 | 25, 15, 26, 27 | supfirege 12234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < )) |
| 29 | 6, 18, 19, 21, 28 | elfzd 13537 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
| 30 | 29 | ex 412 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))) |
| 31 | 30 | ralrimiv 3132 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
| 32 | dfss3 3952 | . 2 ⊢ (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑘 ∈ 𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) | |
| 33 | 31, 32 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 supcsup 9457 ℝcr 11133 < clt 11274 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: sge0isum 46436 |
| Copyright terms: Public domain | W3C validator |