![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuzfz | Structured version Visualization version GIF version |
Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ssuzfz.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ssuzfz.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
ssuzfz.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
Ref | Expression |
---|---|
ssuzfz | ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuzfz.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | 1 | sselda 3976 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
3 | ssuzfz.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2835 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (ℤ≥‘𝑀)) |
5 | eluzel2 12860 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
7 | uzssz 12876 | . . . . . . . . . 10 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
8 | 3, 7 | eqsstri 4011 | . . . . . . . . 9 ⊢ 𝑍 ⊆ ℤ |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 ⊆ ℤ) |
10 | 1, 9 | sstrd 3987 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
11 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆ ℤ) |
12 | ne0i 4334 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐴 → 𝐴 ≠ ∅) | |
13 | 12 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ≠ ∅) |
14 | ssuzfz.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
15 | 14 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ∈ Fin) |
16 | suprfinzcl 12709 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) | |
17 | 11, 13, 15, 16 | syl3anc 1368 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
18 | 11, 17 | sseldd 3977 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ) |
19 | 10 | sselda 3976 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℤ) |
20 | eluzle 12868 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) | |
21 | 4, 20 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝑘) |
22 | zssre 12598 | . . . . . . . . 9 ⊢ ℤ ⊆ ℝ | |
23 | 22 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℤ ⊆ ℝ) |
24 | 10, 23 | sstrd 3987 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
25 | 24 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
26 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
27 | eqidd 2726 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → sup(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )) | |
28 | 25, 15, 26, 27 | supfirege 12234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < )) |
29 | 6, 18, 19, 21, 28 | elfzd 13527 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
30 | 29 | ex 411 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))) |
31 | 30 | ralrimiv 3134 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
32 | dfss3 3965 | . 2 ⊢ (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑘 ∈ 𝐴 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))) | |
33 | 31, 32 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ⊆ wss 3944 ∅c0 4322 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 supcsup 9465 ℝcr 11139 < clt 11280 ≤ cle 11281 ℤcz 12591 ℤ≥cuz 12855 ...cfz 13519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 |
This theorem is referenced by: sge0isum 45953 |
Copyright terms: Public domain | W3C validator |