ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt GIF version

Theorem addlocprlemgt 7040
Description: Lemma for addlocpr 7042. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemgt (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7 (𝜑𝐴P)
2 addlocprlem.b . . . . . . 7 (𝜑𝐵P)
3 addlocprlem.qr . . . . . . 7 (𝜑𝑄 <Q 𝑅)
4 addlocprlem.p . . . . . . 7 (𝜑𝑃Q)
5 addlocprlem.qppr . . . . . . 7 (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
6 addlocprlem.dlo . . . . . . 7 (𝜑𝐷 ∈ (1st𝐴))
7 addlocprlem.uup . . . . . . 7 (𝜑𝑈 ∈ (2nd𝐴))
8 addlocprlem.du . . . . . . 7 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
9 addlocprlem.elo . . . . . . 7 (𝜑𝐸 ∈ (1st𝐵))
10 addlocprlem.tup . . . . . . 7 (𝜑𝑇 ∈ (2nd𝐵))
11 addlocprlem.et . . . . . . 7 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7038 . . . . . 6 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1312adantr 270 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
14 prop 6981 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
151, 14syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
16 elprnql 6987 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
1715, 6, 16syl2anc 403 . . . . . . . . . 10 (𝜑𝐷Q)
18 prop 6981 . . . . . . . . . . . 12 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
192, 18syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
20 elprnql 6987 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2119, 9, 20syl2anc 403 . . . . . . . . . 10 (𝜑𝐸Q)
22 addclnq 6881 . . . . . . . . . 10 ((𝐷Q𝐸Q) → (𝐷 +Q 𝐸) ∈ Q)
2317, 21, 22syl2anc 403 . . . . . . . . 9 (𝜑 → (𝐷 +Q 𝐸) ∈ Q)
24 ltrelnq 6871 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2524brel 4460 . . . . . . . . . . 11 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
263, 25syl 14 . . . . . . . . . 10 (𝜑 → (𝑄Q𝑅Q))
2726simpld 110 . . . . . . . . 9 (𝜑𝑄Q)
28 addclnq 6881 . . . . . . . . . 10 ((𝑃Q𝑃Q) → (𝑃 +Q 𝑃) ∈ Q)
294, 4, 28syl2anc 403 . . . . . . . . 9 (𝜑 → (𝑃 +Q 𝑃) ∈ Q)
30 ltanqg 6906 . . . . . . . . 9 (((𝐷 +Q 𝐸) ∈ Q𝑄Q ∧ (𝑃 +Q 𝑃) ∈ Q) → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
3123, 27, 29, 30syl3anc 1172 . . . . . . . 8 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
32 addcomnqg 6887 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3329, 23, 32syl2anc 403 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
34 addcomnqg 6887 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q𝑄Q) → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3529, 27, 34syl2anc 403 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3633, 35breq12d 3835 . . . . . . . 8 (𝜑 → (((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3731, 36bitrd 186 . . . . . . 7 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3837biimpa 290 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)))
395breq2d 3834 . . . . . . 7 (𝜑 → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4039adantr 270 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4138, 40mpbid 145 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅)
4213, 41jca 300 . . . 4 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
43 ltsonq 6904 . . . . 5 <Q Or Q
4443, 24sotri 4796 . . . 4 (((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅) → (𝑈 +Q 𝑇) <Q 𝑅)
4542, 44syl 14 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q 𝑅)
461, 7jca 300 . . . . 5 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
472, 10jca 300 . . . . 5 (𝜑 → (𝐵P𝑇 ∈ (2nd𝐵)))
4826simprd 112 . . . . 5 (𝜑𝑅Q)
49 addnqpru 7036 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5046, 47, 48, 49syl21anc 1171 . . . 4 (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5150adantr 270 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5245, 51mpd 13 . 2 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))
5352ex 113 1 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  cop 3434   class class class wbr 3822  cfv 4983  (class class class)co 5615  1st c1st 5868  2nd c2nd 5869  Qcnq 6786   +Q cplq 6788   <Q cltq 6791  Pcnp 6797   +P cpp 6799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-eprel 4092  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-irdg 6091  df-1o 6137  df-oadd 6141  df-omul 6142  df-er 6246  df-ec 6248  df-qs 6252  df-ni 6810  df-pli 6811  df-mi 6812  df-lti 6813  df-plpq 6850  df-mpq 6851  df-enq 6853  df-nqqs 6854  df-plqqs 6855  df-mqqs 6856  df-1nqqs 6857  df-rq 6858  df-ltnqqs 6859  df-inp 6972  df-iplp 6974
This theorem is referenced by:  addlocprlem  7041
  Copyright terms: Public domain W3C validator