ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt GIF version

Theorem addlocprlemgt 7618
Description: Lemma for addlocpr 7620. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemgt (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7 (𝜑𝐴P)
2 addlocprlem.b . . . . . . 7 (𝜑𝐵P)
3 addlocprlem.qr . . . . . . 7 (𝜑𝑄 <Q 𝑅)
4 addlocprlem.p . . . . . . 7 (𝜑𝑃Q)
5 addlocprlem.qppr . . . . . . 7 (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
6 addlocprlem.dlo . . . . . . 7 (𝜑𝐷 ∈ (1st𝐴))
7 addlocprlem.uup . . . . . . 7 (𝜑𝑈 ∈ (2nd𝐴))
8 addlocprlem.du . . . . . . 7 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
9 addlocprlem.elo . . . . . . 7 (𝜑𝐸 ∈ (1st𝐵))
10 addlocprlem.tup . . . . . . 7 (𝜑𝑇 ∈ (2nd𝐵))
11 addlocprlem.et . . . . . . 7 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7616 . . . . . 6 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1312adantr 276 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
14 prop 7559 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
151, 14syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
16 elprnql 7565 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
1715, 6, 16syl2anc 411 . . . . . . . . . 10 (𝜑𝐷Q)
18 prop 7559 . . . . . . . . . . . 12 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
192, 18syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
20 elprnql 7565 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2119, 9, 20syl2anc 411 . . . . . . . . . 10 (𝜑𝐸Q)
22 addclnq 7459 . . . . . . . . . 10 ((𝐷Q𝐸Q) → (𝐷 +Q 𝐸) ∈ Q)
2317, 21, 22syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐷 +Q 𝐸) ∈ Q)
24 ltrelnq 7449 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2524brel 4716 . . . . . . . . . . 11 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
263, 25syl 14 . . . . . . . . . 10 (𝜑 → (𝑄Q𝑅Q))
2726simpld 112 . . . . . . . . 9 (𝜑𝑄Q)
28 addclnq 7459 . . . . . . . . . 10 ((𝑃Q𝑃Q) → (𝑃 +Q 𝑃) ∈ Q)
294, 4, 28syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑃 +Q 𝑃) ∈ Q)
30 ltanqg 7484 . . . . . . . . 9 (((𝐷 +Q 𝐸) ∈ Q𝑄Q ∧ (𝑃 +Q 𝑃) ∈ Q) → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
3123, 27, 29, 30syl3anc 1249 . . . . . . . 8 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
32 addcomnqg 7465 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3329, 23, 32syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
34 addcomnqg 7465 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q𝑄Q) → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3529, 27, 34syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3633, 35breq12d 4047 . . . . . . . 8 (𝜑 → (((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3731, 36bitrd 188 . . . . . . 7 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3837biimpa 296 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)))
395breq2d 4046 . . . . . . 7 (𝜑 → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4039adantr 276 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4138, 40mpbid 147 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅)
4213, 41jca 306 . . . 4 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
43 ltsonq 7482 . . . . 5 <Q Or Q
4443, 24sotri 5066 . . . 4 (((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅) → (𝑈 +Q 𝑇) <Q 𝑅)
4542, 44syl 14 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q 𝑅)
461, 7jca 306 . . . . 5 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
472, 10jca 306 . . . . 5 (𝜑 → (𝐵P𝑇 ∈ (2nd𝐵)))
4826simprd 114 . . . . 5 (𝜑𝑅Q)
49 addnqpru 7614 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5046, 47, 48, 49syl21anc 1248 . . . 4 (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5150adantr 276 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5245, 51mpd 13 . 2 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))
5352ex 115 1 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cop 3626   class class class wbr 4034  cfv 5259  (class class class)co 5925  1st c1st 6205  2nd c2nd 6206  Qcnq 7364   +Q cplq 7366   <Q cltq 7369  Pcnp 7375   +P cpp 7377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550  df-iplp 7552
This theorem is referenced by:  addlocprlem  7619
  Copyright terms: Public domain W3C validator