ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz Unicode version

Theorem bezoutlemaz 11987
Description: Lemma for Bézout's identity. Like bezoutlemzz 11986 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlemaz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 11986 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21ancoms 268 . . 3  |-  ( ( B  e.  NN0  /\  A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
32adantll 476 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
4 bezoutlemzz 11986 . . . . 5  |-  ( (
-u A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
54ancoms 268 . . . 4  |-  ( ( B  e.  NN0  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
65adantll 476 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
7 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
8 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  A  e.  ZZ )
98ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  A  e.  ZZ )
10 dvdsnegb 11799 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ )  ->  ( z  ||  A  <->  z 
||  -u A ) )
117, 9, 10syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  A  <->  z  ||  -u A ) )
1211biimprd 158 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u A  -> 
z  ||  A )
)
1312anim1d 336 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  -u A  /\  z  ||  B )  ->  ( z  ||  A  /\  z  ||  B
) ) )
1413imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  ->  ( z  ||  d  ->  ( z 
||  A  /\  z  ||  B ) ) ) )
1514ralimdva 2544 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
168ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  A  e.  ZZ )
1716zcnd 9365 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  A  e.  CC )
18 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1918zcnd 9365 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
20 mulneg12 8344 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  t  e.  CC )  ->  ( -u A  x.  t )  =  ( A  x.  -u t
) )
2117, 19, 20syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u A  x.  t )  =  ( A  x.  -u t ) )
2221oveq1d 5884 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( -u A  x.  t
)  +  ( B  x.  y ) )  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )
2322eqeq2d 2189 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( (
-u A  x.  t
)  +  ( B  x.  y ) )  <-> 
d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
2423rexbidv 2478 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  <->  E. y  e.  ZZ  d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
25 znegcl 9273 . . . . . . . . . 10  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
26 oveq2 5877 . . . . . . . . . . . . . 14  |-  ( x  =  -u t  ->  ( A  x.  x )  =  ( A  x.  -u t ) )
2726oveq1d 5884 . . . . . . . . . . . . 13  |-  ( x  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )
2827eqeq2d 2189 . . . . . . . . . . . 12  |-  ( x  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) ) ) )
2928rexbidv 2478 . . . . . . . . . . 11  |-  ( x  =  -u t  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  E. y  e.  ZZ  d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
3029rspcev 2841 . . . . . . . . . 10  |-  ( (
-u t  e.  ZZ  /\ 
E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
3125, 30sylan 283 . . . . . . . . 9  |-  ( ( t  e.  ZZ  /\  E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
3231ex 115 . . . . . . . 8  |-  ( t  e.  ZZ  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3332adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3424, 33sylbid 150 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3534rexlimdva 2594 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3615, 35anim12d 335 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3736reximdva 2579 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
386, 37mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
39 elznn0 9257 . . . 4  |-  ( A  e.  ZZ  <->  ( A  e.  RR  /\  ( A  e.  NN0  \/  -u A  e.  NN0 ) ) )
4039simprbi 275 . . 3  |-  ( A  e.  ZZ  ->  ( A  e.  NN0  \/  -u A  e.  NN0 ) )
4140adantr 276 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  -> 
( A  e.  NN0  \/  -u A  e.  NN0 ) )
423, 38, 41mpjaodan 798 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801    + caddc 7805    x. cmul 7807   -ucneg 8119   NN0cn0 9165   ZZcz 9242    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779
This theorem is referenced by:  bezoutlembz  11988
  Copyright terms: Public domain W3C validator