ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz Unicode version

Theorem bezoutlemaz 12143
Description: Lemma for Bézout's identity. Like bezoutlemzz 12142 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlemaz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 12142 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21ancoms 268 . . 3  |-  ( ( B  e.  NN0  /\  A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
32adantll 476 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
4 bezoutlemzz 12142 . . . . 5  |-  ( (
-u A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
54ancoms 268 . . . 4  |-  ( ( B  e.  NN0  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
65adantll 476 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
7 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
8 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  A  e.  ZZ )
98ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  A  e.  ZZ )
10 dvdsnegb 11954 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ )  ->  ( z  ||  A  <->  z 
||  -u A ) )
117, 9, 10syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  A  <->  z  ||  -u A ) )
1211biimprd 158 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u A  -> 
z  ||  A )
)
1312anim1d 336 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  -u A  /\  z  ||  B )  ->  ( z  ||  A  /\  z  ||  B
) ) )
1413imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  ->  ( z  ||  d  ->  ( z 
||  A  /\  z  ||  B ) ) ) )
1514ralimdva 2561 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
168ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  A  e.  ZZ )
1716zcnd 9443 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  A  e.  CC )
18 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1918zcnd 9443 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
20 mulneg12 8418 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  t  e.  CC )  ->  ( -u A  x.  t )  =  ( A  x.  -u t
) )
2117, 19, 20syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u A  x.  t )  =  ( A  x.  -u t ) )
2221oveq1d 5934 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( -u A  x.  t
)  +  ( B  x.  y ) )  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )
2322eqeq2d 2205 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( (
-u A  x.  t
)  +  ( B  x.  y ) )  <-> 
d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
2423rexbidv 2495 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  <->  E. y  e.  ZZ  d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
25 znegcl 9351 . . . . . . . . . 10  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
26 oveq2 5927 . . . . . . . . . . . . . 14  |-  ( x  =  -u t  ->  ( A  x.  x )  =  ( A  x.  -u t ) )
2726oveq1d 5934 . . . . . . . . . . . . 13  |-  ( x  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )
2827eqeq2d 2205 . . . . . . . . . . . 12  |-  ( x  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) ) ) )
2928rexbidv 2495 . . . . . . . . . . 11  |-  ( x  =  -u t  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  E. y  e.  ZZ  d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
3029rspcev 2865 . . . . . . . . . 10  |-  ( (
-u t  e.  ZZ  /\ 
E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
3125, 30sylan 283 . . . . . . . . 9  |-  ( ( t  e.  ZZ  /\  E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
3231ex 115 . . . . . . . 8  |-  ( t  e.  ZZ  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3332adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3424, 33sylbid 150 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3534rexlimdva 2611 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3615, 35anim12d 335 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3736reximdva 2596 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
386, 37mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
39 elznn0 9335 . . . 4  |-  ( A  e.  ZZ  <->  ( A  e.  RR  /\  ( A  e.  NN0  \/  -u A  e.  NN0 ) ) )
4039simprbi 275 . . 3  |-  ( A  e.  ZZ  ->  ( A  e.  NN0  \/  -u A  e.  NN0 ) )
4140adantr 276 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  -> 
( A  e.  NN0  \/  -u A  e.  NN0 ) )
423, 38, 41mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030  (class class class)co 5919   CCcc 7872   RRcr 7873    + caddc 7877    x. cmul 7879   -ucneg 8193   NN0cn0 9243   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934
This theorem is referenced by:  bezoutlembz  12144
  Copyright terms: Public domain W3C validator