ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz Unicode version

Theorem bezoutlemaz 11698
Description: Lemma for Bézout's identity. Like bezoutlemzz 11697 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlemaz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 11697 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21ancoms 266 . . 3  |-  ( ( B  e.  NN0  /\  A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
32adantll 467 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
4 bezoutlemzz 11697 . . . . 5  |-  ( (
-u A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
54ancoms 266 . . . 4  |-  ( ( B  e.  NN0  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
65adantll 467 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) ) )
7 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
8 simpll 518 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  A  e.  ZZ )
98ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  A  e.  ZZ )
10 dvdsnegb 11517 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ )  ->  ( z  ||  A  <->  z 
||  -u A ) )
117, 9, 10syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  A  <->  z  ||  -u A ) )
1211biimprd 157 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u A  -> 
z  ||  A )
)
1312anim1d 334 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  -u A  /\  z  ||  B )  ->  ( z  ||  A  /\  z  ||  B
) ) )
1413imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  ->  ( z  ||  d  ->  ( z 
||  A  /\  z  ||  B ) ) ) )
1514ralimdva 2499 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
168ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  A  e.  ZZ )
1716zcnd 9181 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  A  e.  CC )
18 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1918zcnd 9181 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
20 mulneg12 8166 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  t  e.  CC )  ->  ( -u A  x.  t )  =  ( A  x.  -u t
) )
2117, 19, 20syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u A  x.  t )  =  ( A  x.  -u t ) )
2221oveq1d 5789 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( -u A  x.  t
)  +  ( B  x.  y ) )  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )
2322eqeq2d 2151 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( (
-u A  x.  t
)  +  ( B  x.  y ) )  <-> 
d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
2423rexbidv 2438 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  <->  E. y  e.  ZZ  d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
25 znegcl 9092 . . . . . . . . . 10  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
26 oveq2 5782 . . . . . . . . . . . . . 14  |-  ( x  =  -u t  ->  ( A  x.  x )  =  ( A  x.  -u t ) )
2726oveq1d 5789 . . . . . . . . . . . . 13  |-  ( x  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )
2827eqeq2d 2151 . . . . . . . . . . . 12  |-  ( x  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) ) ) )
2928rexbidv 2438 . . . . . . . . . . 11  |-  ( x  =  -u t  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  E. y  e.  ZZ  d  =  ( ( A  x.  -u t
)  +  ( B  x.  y ) ) ) )
3029rspcev 2789 . . . . . . . . . 10  |-  ( (
-u t  e.  ZZ  /\ 
E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
3125, 30sylan 281 . . . . . . . . 9  |-  ( ( t  e.  ZZ  /\  E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y
) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
3231ex 114 . . . . . . . 8  |-  ( t  e.  ZZ  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3332adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( A  x.  -u t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3424, 33sylbid 149 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3534rexlimdva 2549 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3615, 35anim12d 333 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e. 
NN0 )  /\  -u A  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3736reximdva 2534 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  -u A  /\  z  ||  B ) )  /\  E. t  e.  ZZ  E. y  e.  ZZ  d  =  ( ( -u A  x.  t )  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
386, 37mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0 )  /\  -u A  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
39 elznn0 9076 . . . 4  |-  ( A  e.  ZZ  <->  ( A  e.  RR  /\  ( A  e.  NN0  \/  -u A  e.  NN0 ) ) )
4039simprbi 273 . . 3  |-  ( A  e.  ZZ  ->  ( A  e.  NN0  \/  -u A  e.  NN0 ) )
4140adantr 274 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  -> 
( A  e.  NN0  \/  -u A  e.  NN0 ) )
423, 38, 41mpjaodan 787 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   CCcc 7625   RRcr 7626    + caddc 7630    x. cmul 7632   -ucneg 7941   NN0cn0 8984   ZZcz 9061    || cdvds 11500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fl 10050  df-mod 10103  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-dvds 11501
This theorem is referenced by:  bezoutlembz  11699
  Copyright terms: Public domain W3C validator