ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccats1pfxeqbi Unicode version

Theorem ccats1pfxeqbi 11233
Description: A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.)
Assertion
Ref Expression
ccats1pfxeqbi  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W
) )  <->  U  =  ( W ++  <" (lastS `  U ) "> ) ) )

Proof of Theorem ccats1pfxeqbi
StepHypRef Expression
1 ccats1pfxeq 11205 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W
) )  ->  U  =  ( W ++  <" (lastS `  U ) "> ) ) )
2 simp1 1000 . . . . 5  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  W  e. Word  V
)
3 lencl 11035 . . . . . . . . 9  |-  ( W  e. Word  V  ->  ( `  W )  e.  NN0 )
4 nn0p1nn 9369 . . . . . . . . 9  |-  ( ( `  W )  e.  NN0  ->  ( ( `  W
)  +  1 )  e.  NN )
53, 4syl 14 . . . . . . . 8  |-  ( W  e. Word  V  ->  (
( `  W )  +  1 )  e.  NN )
653ad2ant1 1021 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( ( `  W
)  +  1 )  e.  NN )
7 3simpc 999 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( U  e. Word  V  /\  ( `  U
)  =  ( ( `  W )  +  1 ) ) )
8 lswlgt0cl 11083 . . . . . . 7  |-  ( ( ( ( `  W
)  +  1 )  e.  NN  /\  ( U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) ) )  ->  (lastS `  U
)  e.  V )
96, 7, 8syl2anc 411 . . . . . 6  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  (lastS `  U
)  e.  V )
109s1cld 11114 . . . . 5  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  <" (lastS `  U ) ">  e. Word  V )
11 eqidd 2208 . . . . 5  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( `  W )  =  ( `  W )
)
12 pfxccatid 11232 . . . . . 6  |-  ( ( W  e. Word  V  /\  <" (lastS `  U ) ">  e. Word  V  /\  ( `  W )  =  ( `  W )
)  ->  ( ( W ++  <" (lastS `  U ) "> ) prefix  ( `  W )
)  =  W )
1312eqcomd 2213 . . . . 5  |-  ( ( W  e. Word  V  /\  <" (lastS `  U ) ">  e. Word  V  /\  ( `  W )  =  ( `  W )
)  ->  W  =  ( ( W ++  <" (lastS `  U ) "> ) prefix  ( `  W
) ) )
142, 10, 11, 13syl3anc 1250 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  W  =  ( ( W ++  <" (lastS `  U ) "> ) prefix  ( `  W )
) )
15 oveq1 5974 . . . . 5  |-  ( U  =  ( W ++  <" (lastS `  U ) "> )  ->  ( U prefix  ( `  W )
)  =  ( ( W ++  <" (lastS `  U ) "> ) prefix  ( `  W )
) )
1615eqcomd 2213 . . . 4  |-  ( U  =  ( W ++  <" (lastS `  U ) "> )  ->  (
( W ++  <" (lastS `  U ) "> ) prefix  ( `  W )
)  =  ( U prefix 
( `  W ) ) )
1714, 16sylan9eq 2260 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W
)  +  1 ) )  /\  U  =  ( W ++  <" (lastS `  U ) "> ) )  ->  W  =  ( U prefix  ( `  W ) ) )
1817ex 115 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( U  =  ( W ++  <" (lastS `  U ) "> )  ->  W  =  ( U prefix  ( `  W )
) ) )
191, 18impbid 129 1  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  ( `  U )  =  ( ( `  W )  +  1 ) )  ->  ( W  =  ( U prefix  ( `  W
) )  <->  U  =  ( W ++  <" (lastS `  U ) "> ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963   NNcn 9071   NN0cn0 9330  ♯chash 10957  Word cword 11031  lastSclsw 11075   ++ cconcat 11084   <"cs1 11107   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-lsw 11076  df-concat 11085  df-s1 11108  df-substr 11137  df-pfx 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator