| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lencl | Unicode version | ||
| Description: The length of a word is a nonnegative integer. This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| lencl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 11081 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | fnfzo0hash 11065 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | simprl 529 |
. . 3
| |
| 6 | 4, 5 | eqeltrd 2306 |
. 2
|
| 7 | 2, 6 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-ihash 11006 df-word 11080 |
| This theorem is referenced by: iswrdsymb 11097 wrdfin 11098 wrdffz 11100 wrdsymb 11107 wrdsymb0 11112 wrdlenge1n0 11113 wrdlenge2n0 11115 wrdsymb1 11116 eqwrd 11120 wrdred1 11122 wrdred1hash 11123 lswwrd 11126 ccatcl 11136 ccatlen 11138 ccat0 11139 ccatval1 11140 ccatval2 11141 ccatval3 11142 elfzelfzccat 11143 ccatvalfn 11144 ccatsymb 11145 ccatfv0 11146 ccatval21sw 11148 ccatlid 11149 ccatrid 11150 ccatass 11151 ccatrn 11152 lswccatn0lsw 11154 ccatws1lenp1bg 11176 ccats1val2 11179 ccat1st1st 11180 lswccats1 11182 lswccats1fst 11183 fzowrddc 11187 swrdnd 11199 swrdrlen 11201 swrdlen2 11202 swrdfv2 11203 swrdlsw 11209 swrdccat2 11211 pfxid 11226 pfxn0 11228 pfxwrdsymbg 11230 addlenpfx 11231 pfxtrcfv0 11234 pfxeq 11236 pfxtrcfvl 11237 pfxsuffeqwrdeq 11238 pfxccat1 11242 pfxcctswrd 11250 lenrevpfxcctswrd 11252 ccats1pfxeq 11254 ccats1pfxeqrex 11255 ccatopth2 11257 cats1un 11261 wrdind 11262 wrd2ind 11263 swrdccatin1 11265 swrdccatin2 11269 pfxccatin12lem2 11271 pfxccatin12lem3 11272 pfxccatin12 11273 pfxccat3 11274 swrdccat 11275 pfxccatpfx2 11277 pfxccat3a 11278 swrdccat3blem 11279 swrdccat3b 11280 pfxccatid 11281 ccats1pfxeqbi 11282 cats1fvn 11304 cats1fvnd 11305 cats1fvd 11306 wrdupgren 15904 wrdumgren 15914 wksfval 16043 wlkex 16046 iswlkg 16050 wlkcl 16053 wlkclg 16054 wlkeq 16075 wlkv0 16090 wlklenvclwlk 16094 |
| Copyright terms: Public domain | W3C validator |