Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > efcj | Unicode version |
Description: The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 10790 | . . 3 | |
2 | eqid 2165 | . . . 4 | |
3 | 2 | efcvg 11607 | . . 3 |
4 | 1, 3 | syl 14 | . 2 |
5 | nn0uz 9500 | . . 3 | |
6 | eqid 2165 | . . . 4 | |
7 | 6 | efcvg 11607 | . . 3 |
8 | seqex 10382 | . . . 4 | |
9 | 8 | a1i 9 | . . 3 |
10 | 0zd 9203 | . . 3 | |
11 | 6 | eftvalcn 11598 | . . . . . 6 |
12 | eftcl 11595 | . . . . . 6 | |
13 | 11, 12 | eqeltrd 2243 | . . . . 5 |
14 | 5, 10, 13 | serf 10409 | . . . 4 |
15 | 14 | ffvelrnda 5620 | . . 3 |
16 | addcl 7878 | . . . . . 6 | |
17 | 16 | adantl 275 | . . . . 5 |
18 | simpl 108 | . . . . . 6 | |
19 | elnn0uz 9503 | . . . . . . 7 | |
20 | 19 | biimpri 132 | . . . . . 6 |
21 | 18, 20, 13 | syl2an 287 | . . . . 5 |
22 | simpr 109 | . . . . . 6 | |
23 | 22, 5 | eleqtrdi 2259 | . . . . 5 |
24 | cjadd 10826 | . . . . . 6 | |
25 | 24 | adantl 275 | . . . . 5 |
26 | expcl 10473 | . . . . . . . . 9 | |
27 | faccl 10648 | . . . . . . . . . . 11 | |
28 | 27 | adantl 275 | . . . . . . . . . 10 |
29 | 28 | nncnd 8871 | . . . . . . . . 9 |
30 | 28 | nnap0d 8903 | . . . . . . . . 9 # |
31 | 26, 29, 30 | cjdivapd 10910 | . . . . . . . 8 |
32 | cjexp 10835 | . . . . . . . . 9 | |
33 | 28 | nnred 8870 | . . . . . . . . . 10 |
34 | 33 | cjred 10913 | . . . . . . . . 9 |
35 | 32, 34 | oveq12d 5860 | . . . . . . . 8 |
36 | 31, 35 | eqtrd 2198 | . . . . . . 7 |
37 | 11 | fveq2d 5490 | . . . . . . 7 |
38 | 2 | eftvalcn 11598 | . . . . . . . 8 |
39 | 1, 38 | sylan 281 | . . . . . . 7 |
40 | 36, 37, 39 | 3eqtr4d 2208 | . . . . . 6 |
41 | 18, 20, 40 | syl2an 287 | . . . . 5 |
42 | 20 | adantl 275 | . . . . . . 7 |
43 | 1 | ad2antrr 480 | . . . . . . . . 9 |
44 | 43, 42 | expcld 10588 | . . . . . . . 8 |
45 | 18, 20, 29 | syl2an 287 | . . . . . . . 8 |
46 | 18, 20, 30 | syl2an 287 | . . . . . . . 8 # |
47 | 44, 45, 46 | divclapd 8686 | . . . . . . 7 |
48 | oveq2 5850 | . . . . . . . . 9 | |
49 | fveq2 5486 | . . . . . . . . 9 | |
50 | 48, 49 | oveq12d 5860 | . . . . . . . 8 |
51 | 50, 2 | fvmptg 5562 | . . . . . . 7 |
52 | 42, 47, 51 | syl2anc 409 | . . . . . 6 |
53 | 52, 47 | eqeltrd 2243 | . . . . 5 |
54 | 17, 21, 23, 25, 41, 53, 17 | seq3homo 10445 | . . . 4 |
55 | 54 | eqcomd 2171 | . . 3 |
56 | 5, 7, 9, 10, 15, 55 | climcj 11262 | . 2 |
57 | climuni 11234 | . 2 | |
58 | 4, 56, 57 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 cmpt 4043 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 # cap 8479 cdiv 8568 cn 8857 cn0 9114 cuz 9466 cseq 10380 cexp 10454 cfa 10638 ccj 10781 cli 11219 ce 11583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 |
This theorem is referenced by: resinval 11656 recosval 11657 |
Copyright terms: Public domain | W3C validator |