Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > efcj | Unicode version |
Description: The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 10812 | . . 3 | |
2 | eqid 2170 | . . . 4 | |
3 | 2 | efcvg 11629 | . . 3 |
4 | 1, 3 | syl 14 | . 2 |
5 | nn0uz 9521 | . . 3 | |
6 | eqid 2170 | . . . 4 | |
7 | 6 | efcvg 11629 | . . 3 |
8 | seqex 10403 | . . . 4 | |
9 | 8 | a1i 9 | . . 3 |
10 | 0zd 9224 | . . 3 | |
11 | 6 | eftvalcn 11620 | . . . . . 6 |
12 | eftcl 11617 | . . . . . 6 | |
13 | 11, 12 | eqeltrd 2247 | . . . . 5 |
14 | 5, 10, 13 | serf 10430 | . . . 4 |
15 | 14 | ffvelrnda 5631 | . . 3 |
16 | addcl 7899 | . . . . . 6 | |
17 | 16 | adantl 275 | . . . . 5 |
18 | simpl 108 | . . . . . 6 | |
19 | elnn0uz 9524 | . . . . . . 7 | |
20 | 19 | biimpri 132 | . . . . . 6 |
21 | 18, 20, 13 | syl2an 287 | . . . . 5 |
22 | simpr 109 | . . . . . 6 | |
23 | 22, 5 | eleqtrdi 2263 | . . . . 5 |
24 | cjadd 10848 | . . . . . 6 | |
25 | 24 | adantl 275 | . . . . 5 |
26 | expcl 10494 | . . . . . . . . 9 | |
27 | faccl 10669 | . . . . . . . . . . 11 | |
28 | 27 | adantl 275 | . . . . . . . . . 10 |
29 | 28 | nncnd 8892 | . . . . . . . . 9 |
30 | 28 | nnap0d 8924 | . . . . . . . . 9 # |
31 | 26, 29, 30 | cjdivapd 10932 | . . . . . . . 8 |
32 | cjexp 10857 | . . . . . . . . 9 | |
33 | 28 | nnred 8891 | . . . . . . . . . 10 |
34 | 33 | cjred 10935 | . . . . . . . . 9 |
35 | 32, 34 | oveq12d 5871 | . . . . . . . 8 |
36 | 31, 35 | eqtrd 2203 | . . . . . . 7 |
37 | 11 | fveq2d 5500 | . . . . . . 7 |
38 | 2 | eftvalcn 11620 | . . . . . . . 8 |
39 | 1, 38 | sylan 281 | . . . . . . 7 |
40 | 36, 37, 39 | 3eqtr4d 2213 | . . . . . 6 |
41 | 18, 20, 40 | syl2an 287 | . . . . 5 |
42 | 20 | adantl 275 | . . . . . . 7 |
43 | 1 | ad2antrr 485 | . . . . . . . . 9 |
44 | 43, 42 | expcld 10609 | . . . . . . . 8 |
45 | 18, 20, 29 | syl2an 287 | . . . . . . . 8 |
46 | 18, 20, 30 | syl2an 287 | . . . . . . . 8 # |
47 | 44, 45, 46 | divclapd 8707 | . . . . . . 7 |
48 | oveq2 5861 | . . . . . . . . 9 | |
49 | fveq2 5496 | . . . . . . . . 9 | |
50 | 48, 49 | oveq12d 5871 | . . . . . . . 8 |
51 | 50, 2 | fvmptg 5572 | . . . . . . 7 |
52 | 42, 47, 51 | syl2anc 409 | . . . . . 6 |
53 | 52, 47 | eqeltrd 2247 | . . . . 5 |
54 | 17, 21, 23, 25, 41, 53, 17 | seq3homo 10466 | . . . 4 |
55 | 54 | eqcomd 2176 | . . 3 |
56 | 5, 7, 9, 10, 15, 55 | climcj 11284 | . 2 |
57 | climuni 11256 | . 2 | |
58 | 4, 56, 57 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 class class class wbr 3989 cmpt 4050 cfv 5198 (class class class)co 5853 cc 7772 cc0 7774 caddc 7777 # cap 8500 cdiv 8589 cn 8878 cn0 9135 cuz 9487 cseq 10401 cexp 10475 cfa 10659 ccj 10803 cli 11241 ce 11605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 |
This theorem is referenced by: resinval 11678 recosval 11679 |
Copyright terms: Public domain | W3C validator |