Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ge0div | GIF version |
Description: Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.) |
Ref | Expression |
---|---|
ge0div | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7895 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | lediv1 8760 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵))) | |
3 | 1, 2 | mp3an1 1314 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵))) |
4 | 3 | 3impb 1189 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵))) |
5 | gt0ap0 8520 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 # 0) | |
6 | recn 7882 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
7 | div0ap 8594 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (0 / 𝐵) = 0) | |
8 | 6, 7 | sylan 281 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (0 / 𝐵) = 0) |
9 | 5, 8 | syldan 280 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 / 𝐵) = 0) |
10 | 9 | breq1d 3991 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) ≤ (𝐴 / 𝐵) ↔ 0 ≤ (𝐴 / 𝐵))) |
11 | 10 | 3adant1 1005 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) ≤ (𝐴 / 𝐵) ↔ 0 ≤ (𝐴 / 𝐵))) |
12 | 4, 11 | bitrd 187 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℂcc 7747 ℝcr 7748 0cc0 7749 < clt 7929 ≤ cle 7930 # cap 8475 / cdiv 8564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 |
This theorem is referenced by: divge0 8764 halfnneg2 9085 nn0ge0div 9274 ge0divd 9667 2tnp1ge0ge0 10232 nn0ehalf 11836 nn0oddm1d2 11842 odzdvds 12173 pcfaclem 12275 pockthlem 12282 |
Copyright terms: Public domain | W3C validator |