ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmnsgpreima GIF version

Theorem ghmnsgpreima 13225
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
ghmnsgpreima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))

Proof of Theorem ghmnsgpreima
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 13161 . . 3 (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇))
2 ghmpreima 13222 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
31, 2sylan2 286 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
4 ghmgrp1 13201 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
54ad2antrr 488 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑆 ∈ Grp)
6 simprl 529 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑥 ∈ (Base‘𝑆))
7 simprr 531 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑦 ∈ (𝐹𝑉))
8 simpll 527 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
9 eqid 2189 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2189 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
119, 10ghmf 13203 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
128, 11syl 14 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1312ffnd 5385 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹 Fn (Base‘𝑆))
14 elpreima 5656 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (𝐹𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉)))
1513, 14syl 14 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑦 ∈ (𝐹𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉)))
167, 15mpbid 147 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉))
1716simpld 112 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑦 ∈ (Base‘𝑆))
18 eqid 2189 . . . . . . 7 (+g𝑆) = (+g𝑆)
199, 18grpcl 12968 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
205, 6, 17, 19syl3anc 1249 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
21 eqid 2189 . . . . . 6 (-g𝑆) = (-g𝑆)
229, 21grpsubcl 13039 . . . . 5 ((𝑆 ∈ Grp ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆))
235, 20, 6, 22syl3anc 1249 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆))
24 eqid 2189 . . . . . . . 8 (-g𝑇) = (-g𝑇)
259, 21, 24ghmsub 13207 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)))
268, 20, 6, 25syl3anc 1249 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)))
27 eqid 2189 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
289, 18, 27ghmlin 13204 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
298, 6, 17, 28syl3anc 1249 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3029oveq1d 5912 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)) = (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)))
3126, 30eqtrd 2222 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)))
32 simplr 528 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇))
3312, 6ffvelcdmd 5673 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹𝑥) ∈ (Base‘𝑇))
3416simprd 114 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹𝑦) ∈ 𝑉)
3510, 27, 24nsgconj 13162 . . . . . 6 ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ 𝑉) → (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)) ∈ 𝑉)
3632, 33, 34, 35syl3anc 1249 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)) ∈ 𝑉)
3731, 36eqeltrd 2266 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)
38 elpreima 5656 . . . . 5 (𝐹 Fn (Base‘𝑆) → (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉) ↔ (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)))
3913, 38syl 14 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉) ↔ (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)))
4023, 37, 39mpbir2and 946 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉))
4140ralrimivva 2572 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑉)((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉))
429, 18, 21isnsg3 13163 . 2 ((𝐹𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((𝐹𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑉)((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉)))
433, 41, 42sylanbrc 417 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  ccnv 4643  cima 4647   Fn wfn 5230  wf 5231  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  Grpcgrp 12960  -gcsg 12962  SubGrpcsubg 13123  NrmSGrpcnsg 13124   GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-sbg 12965  df-subg 13126  df-nsg 13127  df-ghm 13197
This theorem is referenced by:  ghmker  13226
  Copyright terms: Public domain W3C validator