ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmnsgpreima GIF version

Theorem ghmnsgpreima 13342
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
ghmnsgpreima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))

Proof of Theorem ghmnsgpreima
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 13278 . . 3 (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇))
2 ghmpreima 13339 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
31, 2sylan2 286 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
4 ghmgrp1 13318 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
54ad2antrr 488 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑆 ∈ Grp)
6 simprl 529 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑥 ∈ (Base‘𝑆))
7 simprr 531 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑦 ∈ (𝐹𝑉))
8 simpll 527 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
9 eqid 2193 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2193 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
119, 10ghmf 13320 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
128, 11syl 14 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1312ffnd 5405 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹 Fn (Base‘𝑆))
14 elpreima 5678 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (𝐹𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉)))
1513, 14syl 14 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑦 ∈ (𝐹𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉)))
167, 15mpbid 147 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉))
1716simpld 112 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑦 ∈ (Base‘𝑆))
18 eqid 2193 . . . . . . 7 (+g𝑆) = (+g𝑆)
199, 18grpcl 13083 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
205, 6, 17, 19syl3anc 1249 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
21 eqid 2193 . . . . . 6 (-g𝑆) = (-g𝑆)
229, 21grpsubcl 13155 . . . . 5 ((𝑆 ∈ Grp ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆))
235, 20, 6, 22syl3anc 1249 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆))
24 eqid 2193 . . . . . . . 8 (-g𝑇) = (-g𝑇)
259, 21, 24ghmsub 13324 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)))
268, 20, 6, 25syl3anc 1249 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)))
27 eqid 2193 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
289, 18, 27ghmlin 13321 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
298, 6, 17, 28syl3anc 1249 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3029oveq1d 5934 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)) = (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)))
3126, 30eqtrd 2226 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)))
32 simplr 528 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇))
3312, 6ffvelcdmd 5695 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹𝑥) ∈ (Base‘𝑇))
3416simprd 114 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹𝑦) ∈ 𝑉)
3510, 27, 24nsgconj 13279 . . . . . 6 ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ 𝑉) → (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)) ∈ 𝑉)
3632, 33, 34, 35syl3anc 1249 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)) ∈ 𝑉)
3731, 36eqeltrd 2270 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)
38 elpreima 5678 . . . . 5 (𝐹 Fn (Base‘𝑆) → (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉) ↔ (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)))
3913, 38syl 14 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉) ↔ (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)))
4023, 37, 39mpbir2and 946 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉))
4140ralrimivva 2576 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑉)((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉))
429, 18, 21isnsg3 13280 . 2 ((𝐹𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((𝐹𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑉)((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉)))
433, 41, 42sylanbrc 417 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  ccnv 4659  cima 4663   Fn wfn 5250  wf 5251  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  Grpcgrp 13075  -gcsg 13077  SubGrpcsubg 13240  NrmSGrpcnsg 13241   GrpHom cghm 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-nsg 13244  df-ghm 13314
This theorem is referenced by:  ghmker  13343
  Copyright terms: Public domain W3C validator