![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isridlrng | GIF version |
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
Ref | Expression |
---|---|
isridlrng.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) |
isridlrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isridlrng.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isridlrng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | 1 | opprrng 13576 | . . 3 ⊢ (𝑅 ∈ Rng → (oppr‘𝑅) ∈ Rng) |
3 | 1 | opprsubgg 13583 | . . . . 5 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘(oppr‘𝑅))) |
4 | 3 | eleq2d 2263 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝐼 ∈ (SubGrp‘𝑅) ↔ 𝐼 ∈ (SubGrp‘(oppr‘𝑅)))) |
5 | 4 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ (SubGrp‘(oppr‘𝑅))) |
6 | isridlrng.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
7 | eqid 2193 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
8 | eqid 2193 | . . . 4 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
9 | 6, 7, 8 | dflidl2rng 13980 | . . 3 ⊢ (((oppr‘𝑅) ∈ Rng ∧ 𝐼 ∈ (SubGrp‘(oppr‘𝑅))) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼)) |
10 | 2, 5, 9 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼)) |
11 | isridlrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 1, 11 | opprbasg 13574 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝐵 = (Base‘(oppr‘𝑅))) |
13 | 12 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘(oppr‘𝑅))) |
14 | 13 | raleqdv 2696 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼)) |
15 | isridlrng.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
16 | 11, 15, 1, 8 | opprmulg 13570 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
17 | 16 | ad4ant134 1219 | . . . . 5 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
18 | 17 | eleq1d 2262 | . . . 4 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
19 | 18 | ralbidva 2490 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
20 | 19 | ralbidva 2490 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
21 | 10, 14, 20 | 3bitr2d 216 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 .rcmulr 12699 SubGrpcsubg 13240 Rngcrng 13431 opprcoppr 13566 LIdealclidl 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-subg 13243 df-cmn 13359 df-abl 13360 df-mgp 13420 df-rng 13432 df-oppr 13567 df-lssm 13852 df-sra 13934 df-rgmod 13935 df-lidl 13968 |
This theorem is referenced by: df2idl2rng 14007 |
Copyright terms: Public domain | W3C validator |