ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridlrng GIF version

Theorem isridlrng 14038
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u 𝑈 = (LIdeal‘(oppr𝑅))
isridlrng.b 𝐵 = (Base‘𝑅)
isridlrng.t · = (.r𝑅)
Assertion
Ref Expression
isridlrng ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2196 . . . 4 (oppr𝑅) = (oppr𝑅)
21opprrng 13633 . . 3 (𝑅 ∈ Rng → (oppr𝑅) ∈ Rng)
31opprsubgg 13640 . . . . 5 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘(oppr𝑅)))
43eleq2d 2266 . . . 4 (𝑅 ∈ Rng → (𝐼 ∈ (SubGrp‘𝑅) ↔ 𝐼 ∈ (SubGrp‘(oppr𝑅))))
54biimpa 296 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ (SubGrp‘(oppr𝑅)))
6 isridlrng.u . . . 4 𝑈 = (LIdeal‘(oppr𝑅))
7 eqid 2196 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
8 eqid 2196 . . . 4 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
96, 7, 8dflidl2rng 14037 . . 3 (((oppr𝑅) ∈ Rng ∧ 𝐼 ∈ (SubGrp‘(oppr𝑅))) → (𝐼𝑈 ↔ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼))
102, 5, 9syl2an2r 595 . 2 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼))
11 isridlrng.b . . . . 5 𝐵 = (Base‘𝑅)
121, 11opprbasg 13631 . . . 4 (𝑅 ∈ Rng → 𝐵 = (Base‘(oppr𝑅)))
1312adantr 276 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘(oppr𝑅)))
1413raleqdv 2699 . 2 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥𝐵𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼))
15 isridlrng.t . . . . . . 7 · = (.r𝑅)
1611, 15, 1, 8opprmulg 13627 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥𝐵𝑦𝐼) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
1716ad4ant134 1219 . . . . 5 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐼) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
1817eleq1d 2265 . . . 4 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
1918ralbidva 2493 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥𝐵) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2019ralbidva 2493 . 2 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥𝐵𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2110, 14, 203bitr2d 216 1 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  SubGrpcsubg 13297  Rngcrng 13488  opprcoppr 13623  LIdealclidl 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-subg 13300  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-oppr 13624  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025
This theorem is referenced by:  df2idl2rng  14064
  Copyright terms: Public domain W3C validator