| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isridlrng | GIF version | ||
| Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| isridlrng.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | 
| isridlrng.b | ⊢ 𝐵 = (Base‘𝑅) | 
| isridlrng.t | ⊢ · = (.r‘𝑅) | 
| Ref | Expression | 
|---|---|
| isridlrng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | 1 | opprrng 13633 | . . 3 ⊢ (𝑅 ∈ Rng → (oppr‘𝑅) ∈ Rng) | 
| 3 | 1 | opprsubgg 13640 | . . . . 5 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘(oppr‘𝑅))) | 
| 4 | 3 | eleq2d 2266 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝐼 ∈ (SubGrp‘𝑅) ↔ 𝐼 ∈ (SubGrp‘(oppr‘𝑅)))) | 
| 5 | 4 | biimpa 296 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ (SubGrp‘(oppr‘𝑅))) | 
| 6 | isridlrng.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
| 7 | eqid 2196 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
| 8 | eqid 2196 | . . . 4 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 9 | 6, 7, 8 | dflidl2rng 14037 | . . 3 ⊢ (((oppr‘𝑅) ∈ Rng ∧ 𝐼 ∈ (SubGrp‘(oppr‘𝑅))) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼)) | 
| 10 | 2, 5, 9 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼)) | 
| 11 | isridlrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 1, 11 | opprbasg 13631 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝐵 = (Base‘(oppr‘𝑅))) | 
| 13 | 12 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘(oppr‘𝑅))) | 
| 14 | 13 | raleqdv 2699 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼)) | 
| 15 | isridlrng.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 16 | 11, 15, 1, 8 | opprmulg 13627 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) | 
| 17 | 16 | ad4ant134 1219 | . . . . 5 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) | 
| 18 | 17 | eleq1d 2265 | . . . 4 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) | 
| 19 | 18 | ralbidva 2493 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | 
| 20 | 19 | ralbidva 2493 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | 
| 21 | 10, 14, 20 | 3bitr2d 216 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 SubGrpcsubg 13297 Rngcrng 13488 opprcoppr 13623 LIdealclidl 14023 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-subg 13300 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-oppr 13624 df-lssm 13909 df-sra 13991 df-rgmod 13992 df-lidl 14025 | 
| This theorem is referenced by: df2idl2rng 14064 | 
| Copyright terms: Public domain | W3C validator |