ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleii Unicode version

Theorem ltleii 8210
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
ltlei.1  |-  A  < 
B
Assertion
Ref Expression
ltleii  |-  A  <_  B

Proof of Theorem ltleii
StepHypRef Expression
1 ltlei.1 . 2  |-  A  < 
B
2 lt.1 . . 3  |-  A  e.  RR
3 lt.2 . . 3  |-  B  e.  RR
42, 3ltlei 8209 . 2  |-  ( A  <  B  ->  A  <_  B )
51, 4ax-mp 5 1  |-  A  <_  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   class class class wbr 4059   RRcr 7959    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-lttrn 8074
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  0le1  8589  1le2  9280  1le3  9283  halfge0  9288  decleh  9573  eluz4eluz2  9723  uzuzle23  9727  fz0to4untppr  10281  fzo0to42pr  10386  xnn0nnen  10619  4bc2eq6  10956  resqrexlemga  11449  sqrt9  11474  sqrt2gt1lt2  11475  sqrtpclii  11556  0.999...  11947  ef01bndlem  12182  sin01bnd  12183  cos01bnd  12184  cos2bnd  12186  cos12dec  12194  flodddiv4  12362  strleun  13051  dveflem  15313  sinhalfpilem  15378  sincosq1lem  15412  sincos4thpi  15427  sincos6thpi  15429  pigt3  15431  pige3  15432  cosq34lt1  15437  cos02pilt1  15438  cos0pilt1  15439  rpabscxpbnd  15527  2logb9irr  15558  2logb9irrap  15564  lgsdir2lem1  15620  ex-fl  15861  ex-gcd  15867
  Copyright terms: Public domain W3C validator