Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version |
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | |
lt.2 | |
ltlei.1 |
Ref | Expression |
---|---|
ltleii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlei.1 | . 2 | |
2 | lt.1 | . . 3 | |
3 | lt.2 | . . 3 | |
4 | 2, 3 | ltlei 7996 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 class class class wbr 3981 cr 7748 clt 7929 cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 ax-pre-lttrn 7863 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: 0le1 8375 1le2 9061 1le3 9064 halfge0 9069 decleh 9352 eluz4eluz2 9501 uzuzle23 9505 fz0to4untppr 10055 fzo0to42pr 10151 4bc2eq6 10683 resqrexlemga 10961 sqrt9 10986 sqrt2gt1lt2 10987 sqrtpclii 11068 0.999... 11458 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 cos2bnd 11697 cos12dec 11704 flodddiv4 11867 strleun 12479 dveflem 13287 sinhalfpilem 13312 sincosq1lem 13346 sincos4thpi 13361 sincos6thpi 13363 pigt3 13365 pige3 13366 cosq34lt1 13371 cos02pilt1 13372 cos0pilt1 13373 rpabscxpbnd 13459 2logb9irr 13489 2logb9irrap 13495 lgsdir2lem1 13529 ex-fl 13566 ex-gcd 13572 |
Copyright terms: Public domain | W3C validator |