| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 |
|
| lt.2 |
|
| ltlei.1 |
|
| Ref | Expression |
|---|---|
| ltleii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 |
. 2
| |
| 2 | lt.1 |
. . 3
| |
| 3 | lt.2 |
. . 3
| |
| 4 | 2, 3 | ltlei 8145 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: 0le1 8525 1le2 9216 1le3 9219 halfge0 9224 decleh 9508 eluz4eluz2 9658 uzuzle23 9662 fz0to4untppr 10216 fzo0to42pr 10313 xnn0nnen 10546 4bc2eq6 10883 resqrexlemga 11205 sqrt9 11230 sqrt2gt1lt2 11231 sqrtpclii 11312 0.999... 11703 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos2bnd 11942 cos12dec 11950 flodddiv4 12118 strleun 12807 dveflem 15046 sinhalfpilem 15111 sincosq1lem 15145 sincos4thpi 15160 sincos6thpi 15162 pigt3 15164 pige3 15165 cosq34lt1 15170 cos02pilt1 15171 cos0pilt1 15172 rpabscxpbnd 15260 2logb9irr 15291 2logb9irrap 15297 lgsdir2lem1 15353 ex-fl 15455 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |