ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleii Unicode version

Theorem ltleii 8146
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
ltlei.1  |-  A  < 
B
Assertion
Ref Expression
ltleii  |-  A  <_  B

Proof of Theorem ltleii
StepHypRef Expression
1 ltlei.1 . 2  |-  A  < 
B
2 lt.1 . . 3  |-  A  e.  RR
3 lt.2 . . 3  |-  B  e.  RR
42, 3ltlei 8145 . 2  |-  ( A  <  B  ->  A  <_  B )
51, 4ax-mp 5 1  |-  A  <_  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   class class class wbr 4034   RRcr 7895    < clt 8078    <_ cle 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-lttrn 8010
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084
This theorem is referenced by:  0le1  8525  1le2  9216  1le3  9219  halfge0  9224  decleh  9508  eluz4eluz2  9658  uzuzle23  9662  fz0to4untppr  10216  fzo0to42pr  10313  xnn0nnen  10546  4bc2eq6  10883  resqrexlemga  11205  sqrt9  11230  sqrt2gt1lt2  11231  sqrtpclii  11312  0.999...  11703  ef01bndlem  11938  sin01bnd  11939  cos01bnd  11940  cos2bnd  11942  cos12dec  11950  flodddiv4  12118  strleun  12807  dveflem  15046  sinhalfpilem  15111  sincosq1lem  15145  sincos4thpi  15160  sincos6thpi  15162  pigt3  15164  pige3  15165  cosq34lt1  15170  cos02pilt1  15171  cos0pilt1  15172  rpabscxpbnd  15260  2logb9irr  15291  2logb9irrap  15297  lgsdir2lem1  15353  ex-fl  15455  ex-gcd  15461
  Copyright terms: Public domain W3C validator