| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 |
|
| lt.2 |
|
| ltlei.1 |
|
| Ref | Expression |
|---|---|
| ltleii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 |
. 2
| |
| 2 | lt.1 |
. . 3
| |
| 3 | lt.2 |
. . 3
| |
| 4 | 2, 3 | ltlei 8209 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: 0le1 8589 1le2 9280 1le3 9283 halfge0 9288 decleh 9573 eluz4eluz2 9723 uzuzle23 9727 fz0to4untppr 10281 fzo0to42pr 10386 xnn0nnen 10619 4bc2eq6 10956 resqrexlemga 11449 sqrt9 11474 sqrt2gt1lt2 11475 sqrtpclii 11556 0.999... 11947 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 cos2bnd 12186 cos12dec 12194 flodddiv4 12362 strleun 13051 dveflem 15313 sinhalfpilem 15378 sincosq1lem 15412 sincos4thpi 15427 sincos6thpi 15429 pigt3 15431 pige3 15432 cosq34lt1 15437 cos02pilt1 15438 cos0pilt1 15439 rpabscxpbnd 15527 2logb9irr 15558 2logb9irrap 15564 lgsdir2lem1 15620 ex-fl 15861 ex-gcd 15867 |
| Copyright terms: Public domain | W3C validator |