![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version |
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 |
![]() ![]() ![]() ![]() |
lt.2 |
![]() ![]() ![]() ![]() |
ltlei.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltleii |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlei.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | lt.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | lt.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | ltlei 8073 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-pre-ltirr 7937 ax-pre-lttrn 7939 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-cnv 4646 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 |
This theorem is referenced by: 0le1 8452 1le2 9141 1le3 9144 halfge0 9149 decleh 9432 eluz4eluz2 9581 uzuzle23 9585 fz0to4untppr 10138 fzo0to42pr 10234 4bc2eq6 10768 resqrexlemga 11046 sqrt9 11071 sqrt2gt1lt2 11072 sqrtpclii 11153 0.999... 11543 ef01bndlem 11778 sin01bnd 11779 cos01bnd 11780 cos2bnd 11782 cos12dec 11789 flodddiv4 11953 strleun 12578 cnfldstr 13739 dveflem 14483 sinhalfpilem 14508 sincosq1lem 14542 sincos4thpi 14557 sincos6thpi 14559 pigt3 14561 pige3 14562 cosq34lt1 14567 cos02pilt1 14568 cos0pilt1 14569 rpabscxpbnd 14655 2logb9irr 14685 2logb9irrap 14691 lgsdir2lem1 14725 ex-fl 14773 ex-gcd 14779 |
Copyright terms: Public domain | W3C validator |