| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 |
|
| lt.2 |
|
| ltlei.1 |
|
| Ref | Expression |
|---|---|
| ltleii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 |
. 2
| |
| 2 | lt.1 |
. . 3
| |
| 3 | lt.2 |
. . 3
| |
| 4 | 2, 3 | ltlei 8176 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-lttrn 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 |
| This theorem is referenced by: 0le1 8556 1le2 9247 1le3 9250 halfge0 9255 decleh 9540 eluz4eluz2 9690 uzuzle23 9694 fz0to4untppr 10248 fzo0to42pr 10351 xnn0nnen 10584 4bc2eq6 10921 resqrexlemga 11367 sqrt9 11392 sqrt2gt1lt2 11393 sqrtpclii 11474 0.999... 11865 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 cos2bnd 12104 cos12dec 12112 flodddiv4 12280 strleun 12969 dveflem 15231 sinhalfpilem 15296 sincosq1lem 15330 sincos4thpi 15345 sincos6thpi 15347 pigt3 15349 pige3 15350 cosq34lt1 15355 cos02pilt1 15356 cos0pilt1 15357 rpabscxpbnd 15445 2logb9irr 15476 2logb9irrap 15482 lgsdir2lem1 15538 ex-fl 15698 ex-gcd 15704 |
| Copyright terms: Public domain | W3C validator |