| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 |
|
| lt.2 |
|
| ltlei.1 |
|
| Ref | Expression |
|---|---|
| ltleii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 |
. 2
| |
| 2 | lt.1 |
. . 3
| |
| 3 | lt.2 |
. . 3
| |
| 4 | 2, 3 | ltlei 8248 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: 0le1 8628 1le2 9319 1le3 9322 halfge0 9327 decleh 9612 eluz4eluz2 9762 uzuzle23 9766 fz0to4untppr 10320 fzo0to42pr 10426 xnn0nnen 10659 4bc2eq6 10996 resqrexlemga 11534 sqrt9 11559 sqrt2gt1lt2 11560 sqrtpclii 11641 0.999... 12032 ef01bndlem 12267 sin01bnd 12268 cos01bnd 12269 cos2bnd 12271 cos12dec 12279 flodddiv4 12447 strleun 13137 dveflem 15400 sinhalfpilem 15465 sincosq1lem 15499 sincos4thpi 15514 sincos6thpi 15516 pigt3 15518 pige3 15519 cosq34lt1 15524 cos02pilt1 15525 cos0pilt1 15526 rpabscxpbnd 15614 2logb9irr 15645 2logb9irrap 15651 lgsdir2lem1 15707 ex-fl 16089 ex-gcd 16095 |
| Copyright terms: Public domain | W3C validator |