ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleii Unicode version

Theorem ltleii 8059
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
ltlei.1  |-  A  < 
B
Assertion
Ref Expression
ltleii  |-  A  <_  B

Proof of Theorem ltleii
StepHypRef Expression
1 ltlei.1 . 2  |-  A  < 
B
2 lt.1 . . 3  |-  A  e.  RR
3 lt.2 . . 3  |-  B  e.  RR
42, 3ltlei 8058 . 2  |-  ( A  <  B  ->  A  <_  B )
51, 4ax-mp 5 1  |-  A  <_  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   class class class wbr 4003   RRcr 7809    < clt 7991    <_ cle 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-pre-ltirr 7922  ax-pre-lttrn 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997
This theorem is referenced by:  0le1  8437  1le2  9126  1le3  9129  halfge0  9134  decleh  9417  eluz4eluz2  9566  uzuzle23  9570  fz0to4untppr  10123  fzo0to42pr  10219  4bc2eq6  10753  resqrexlemga  11031  sqrt9  11056  sqrt2gt1lt2  11057  sqrtpclii  11138  0.999...  11528  ef01bndlem  11763  sin01bnd  11764  cos01bnd  11765  cos2bnd  11767  cos12dec  11774  flodddiv4  11938  strleun  12562  cnfldstr  13427  dveflem  14157  sinhalfpilem  14182  sincosq1lem  14216  sincos4thpi  14231  sincos6thpi  14233  pigt3  14235  pige3  14236  cosq34lt1  14241  cos02pilt1  14242  cos0pilt1  14243  rpabscxpbnd  14329  2logb9irr  14359  2logb9irrap  14365  lgsdir2lem1  14399  ex-fl  14447  ex-gcd  14453
  Copyright terms: Public domain W3C validator