| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrennb | GIF version | ||
| Description: Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| ltrennb | ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnnnq 7571 | . . 3 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q )) | |
| 2 | nnnq 7570 | . . . . 5 ⊢ (𝐽 ∈ N → [〈𝐽, 1o〉] ~Q ∈ Q) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → [〈𝐽, 1o〉] ~Q ∈ Q) |
| 4 | nnnq 7570 | . . . . 5 ⊢ (𝐾 ∈ N → [〈𝐾, 1o〉] ~Q ∈ Q) | |
| 5 | 4 | adantl 277 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → [〈𝐾, 1o〉] ~Q ∈ Q) |
| 6 | ltnqpr 7741 | . . . 4 ⊢ (([〈𝐽, 1o〉] ~Q ∈ Q ∧ [〈𝐾, 1o〉] ~Q ∈ Q) → ([〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q ↔ 〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉)) | |
| 7 | 3, 5, 6 | syl2anc 411 | . . 3 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → ([〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q ↔ 〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉)) |
| 8 | nqprlu 7695 | . . . . 5 ⊢ ([〈𝐽, 1o〉] ~Q ∈ Q → 〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 ∈ P) | |
| 9 | 3, 8 | syl 14 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → 〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 ∈ P) |
| 10 | nqprlu 7695 | . . . . 5 ⊢ ([〈𝐾, 1o〉] ~Q ∈ Q → 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 ∈ P) | |
| 11 | 5, 10 | syl 14 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 ∈ P) |
| 12 | prsrlt 7935 | . . . 4 ⊢ ((〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 ∈ P) → (〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 ↔ [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 ↔ [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 14 | 1, 7, 13 | 3bitrd 214 | . 2 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 15 | ltresr 7987 | . 2 ⊢ (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ↔ [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | |
| 16 | 14, 15 | bitr4di 198 | 1 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 {cab 2193 〈cop 3646 class class class wbr 4059 (class class class)co 5967 1oc1o 6518 [cec 6641 Ncnpi 7420 <N clti 7423 ~Q ceq 7427 Qcnq 7428 <Q cltq 7433 Pcnp 7439 1Pc1p 7440 +P cpp 7441 <P cltp 7443 ~R cer 7444 0Rc0r 7446 <R cltr 7451 <ℝ cltrr 7964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-iltp 7618 df-enr 7874 df-nr 7875 df-ltr 7878 df-0r 7879 df-r 7970 df-lt 7973 |
| This theorem is referenced by: ltrenn 8003 axcaucvglemres 8047 |
| Copyright terms: Public domain | W3C validator |