ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc2 Unicode version

Theorem modqcyc2 10241
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  -  ( B  x.  N
) )  mod  B
)  =  ( A  mod  B ) )

Proof of Theorem modqcyc2
StepHypRef Expression
1 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  ZZ )
21zcnd 9270 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  N  e.  CC )
3 qcn 9525 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  CC )
43ad2antrl 482 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  B  e.  CC )
52, 4mulneg1d 8269 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( -u N  x.  B
)  =  -u ( N  x.  B )
)
6 mulcom 7844 . . . . . . . 8  |-  ( ( B  e.  CC  /\  N  e.  CC )  ->  ( B  x.  N
)  =  ( N  x.  B ) )
76negeqd 8053 . . . . . . 7  |-  ( ( B  e.  CC  /\  N  e.  CC )  -> 
-u ( B  x.  N )  =  -u ( N  x.  B
) )
84, 2, 7syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  -u ( B  x.  N
)  =  -u ( N  x.  B )
)
95, 8eqtr4d 2193 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( -u N  x.  B
)  =  -u ( B  x.  N )
)
109oveq2d 5834 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  +  (
-u N  x.  B
) )  =  ( A  +  -u ( B  x.  N )
) )
11 qcn 9525 . . . . . 6  |-  ( A  e.  QQ  ->  A  e.  CC )
1211ad2antrr 480 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  ->  A  e.  CC )
134, 2mulcld 7881 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( B  x.  N
)  e.  CC )
1412, 13negsubd 8175 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  +  -u ( B  x.  N
) )  =  ( A  -  ( B  x.  N ) ) )
1510, 14eqtr2d 2191 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( A  -  ( B  x.  N )
)  =  ( A  +  ( -u N  x.  B ) ) )
1615oveq1d 5833 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  -  ( B  x.  N
) )  mod  B
)  =  ( ( A  +  ( -u N  x.  B )
)  mod  B )
)
17 znegcl 9181 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
18 modqcyc 10240 . . 3  |-  ( ( ( A  e.  QQ  /\  -u N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( -u N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
1917, 18sylanl2 401 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  +  ( -u N  x.  B
) )  mod  B
)  =  ( A  mod  B ) )
2016, 19eqtrd 2190 1  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  -  ( B  x.  N
) )  mod  B
)  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5818   CCcc 7713   0cc0 7715    + caddc 7718    x. cmul 7720    < clt 7895    - cmin 8029   -ucneg 8030   ZZcz 9150   QQcq 9510    mod cmo 10203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-po 4255  df-iso 4256  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-n0 9074  df-z 9151  df-q 9511  df-rp 9543  df-fl 10151  df-mod 10204
This theorem is referenced by:  modqadd1  10242  modqmul1  10258  q2submod  10266  modqsubdir  10274
  Copyright terms: Public domain W3C validator