ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  q2submod Unicode version

Theorem q2submod 10594
Description: If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
Assertion
Ref Expression
q2submod  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )

Proof of Theorem q2submod
StepHypRef Expression
1 qcn 9817 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
213ad2ant2 1043 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  CC )
32adantr 276 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  CC )
43mulridd 8151 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  x.  1 )  =  B )
54oveq2d 6010 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  -  ( B  x.  1
) )  =  ( A  -  B ) )
65oveq1d 6009 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  ( B  x.  1 ) )  mod 
B )  =  ( ( A  -  B
)  mod  B )
)
7 simpl1 1024 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  A  e.  QQ )
8 1zzd 9461 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  1  e.  ZZ )
9 simpl2 1025 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  QQ )
10 simpl3 1026 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  0  <  B
)
11 modqcyc2 10569 . . 3  |-  ( ( ( A  e.  QQ  /\  1  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  -  ( B  x.  1
) )  mod  B
)  =  ( A  mod  B ) )
127, 8, 9, 10, 11syl22anc 1272 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  ( B  x.  1 ) )  mod 
B )  =  ( A  mod  B ) )
13 qsubcl 9821 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
147, 9, 13syl2anc 411 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  -  B )  e.  QQ )
15 simpr 110 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  <_  A  /\  A  <  (
2  x.  B ) ) )
16 qre 9808 . . . . . . . 8  |-  ( A  e.  QQ  ->  A  e.  RR )
177, 16syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  A  e.  RR )
18 qre 9808 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  RR )
199, 18syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  RR )
2017, 19subge0d 8670 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 0  <_ 
( A  -  B
)  <->  B  <_  A ) )
2120bicomd 141 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  <_  A 
<->  0  <_  ( A  -  B ) ) )
2232timesd 9342 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 2  x.  B )  =  ( B  +  B ) )
2322breq2d 4094 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  < 
( 2  x.  B
)  <->  A  <  ( B  +  B ) ) )
2417, 19, 19ltsubaddd 8676 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  B )  < 
B  <->  A  <  ( B  +  B ) ) )
2523, 24bitr4d 191 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  < 
( 2  x.  B
)  <->  ( A  -  B )  <  B
) )
2621, 25anbi12d 473 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( B  <_  A  /\  A  <  ( 2  x.  B
) )  <->  ( 0  <_  ( A  -  B )  /\  ( A  -  B )  <  B ) ) )
2715, 26mpbid 147 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 0  <_ 
( A  -  B
)  /\  ( A  -  B )  <  B
) )
28 modqid 10558 . . 3  |-  ( ( ( ( A  -  B )  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_ 
( A  -  B
)  /\  ( A  -  B )  <  B
) )  ->  (
( A  -  B
)  mod  B )  =  ( A  -  B ) )
2914, 9, 27, 28syl21anc 1270 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  B )  mod 
B )  =  ( A  -  B ) )
306, 12, 293eqtr3d 2270 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    < clt 8169    <_ cle 8170    - cmin 8305   2c2 9149   ZZcz 9434   QQcq 9802    mod cmo 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-q 9803  df-rp 9838  df-fl 10477  df-mod 10532
This theorem is referenced by:  modifeq2int  10595  modaddmodup  10596
  Copyright terms: Public domain W3C validator