ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  q2submod Unicode version

Theorem q2submod 9999
Description: If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
Assertion
Ref Expression
q2submod  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )

Proof of Theorem q2submod
StepHypRef Expression
1 qcn 9276 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
213ad2ant2 971 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  CC )
32adantr 272 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  CC )
43mulid1d 7655 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  x.  1 )  =  B )
54oveq2d 5722 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  -  ( B  x.  1
) )  =  ( A  -  B ) )
65oveq1d 5721 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  ( B  x.  1 ) )  mod 
B )  =  ( ( A  -  B
)  mod  B )
)
7 simpl1 952 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  A  e.  QQ )
8 1zzd 8933 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  1  e.  ZZ )
9 simpl2 953 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  QQ )
10 simpl3 954 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  0  <  B
)
11 modqcyc2 9974 . . 3  |-  ( ( ( A  e.  QQ  /\  1  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  -  ( B  x.  1
) )  mod  B
)  =  ( A  mod  B ) )
127, 8, 9, 10, 11syl22anc 1185 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  ( B  x.  1 ) )  mod 
B )  =  ( A  mod  B ) )
13 qsubcl 9280 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
147, 9, 13syl2anc 406 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  -  B )  e.  QQ )
15 simpr 109 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  <_  A  /\  A  <  (
2  x.  B ) ) )
16 qre 9267 . . . . . . . 8  |-  ( A  e.  QQ  ->  A  e.  RR )
177, 16syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  A  e.  RR )
18 qre 9267 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  RR )
199, 18syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  RR )
2017, 19subge0d 8163 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 0  <_ 
( A  -  B
)  <->  B  <_  A ) )
2120bicomd 140 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  <_  A 
<->  0  <_  ( A  -  B ) ) )
2232timesd 8814 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 2  x.  B )  =  ( B  +  B ) )
2322breq2d 3887 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  < 
( 2  x.  B
)  <->  A  <  ( B  +  B ) ) )
2417, 19, 19ltsubaddd 8169 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  B )  < 
B  <->  A  <  ( B  +  B ) ) )
2523, 24bitr4d 190 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  < 
( 2  x.  B
)  <->  ( A  -  B )  <  B
) )
2621, 25anbi12d 460 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( B  <_  A  /\  A  <  ( 2  x.  B
) )  <->  ( 0  <_  ( A  -  B )  /\  ( A  -  B )  <  B ) ) )
2715, 26mpbid 146 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 0  <_ 
( A  -  B
)  /\  ( A  -  B )  <  B
) )
28 modqid 9963 . . 3  |-  ( ( ( ( A  -  B )  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_ 
( A  -  B
)  /\  ( A  -  B )  <  B
) )  ->  (
( A  -  B
)  mod  B )  =  ( A  -  B ) )
2914, 9, 27, 28syl21anc 1183 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  B )  mod 
B )  =  ( A  -  B ) )
306, 12, 293eqtr3d 2140 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930    = wceq 1299    e. wcel 1448   class class class wbr 3875  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    x. cmul 7505    < clt 7672    <_ cle 7673    - cmin 7804   2c2 8629   ZZcz 8906   QQcq 9261    mod cmo 9936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-q 9262  df-rp 9292  df-fl 9884  df-mod 9937
This theorem is referenced by:  modifeq2int  10000  modaddmodup  10001
  Copyright terms: Public domain W3C validator