ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  q2submod Unicode version

Theorem q2submod 10310
Description: If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
Assertion
Ref Expression
q2submod  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )

Proof of Theorem q2submod
StepHypRef Expression
1 qcn 9563 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
213ad2ant2 1008 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  CC )
32adantr 274 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  CC )
43mulid1d 7907 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  x.  1 )  =  B )
54oveq2d 5852 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  -  ( B  x.  1
) )  =  ( A  -  B ) )
65oveq1d 5851 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  ( B  x.  1 ) )  mod 
B )  =  ( ( A  -  B
)  mod  B )
)
7 simpl1 989 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  A  e.  QQ )
8 1zzd 9209 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  1  e.  ZZ )
9 simpl2 990 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  QQ )
10 simpl3 991 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  0  <  B
)
11 modqcyc2 10285 . . 3  |-  ( ( ( A  e.  QQ  /\  1  e.  ZZ )  /\  ( B  e.  QQ  /\  0  < 
B ) )  -> 
( ( A  -  ( B  x.  1
) )  mod  B
)  =  ( A  mod  B ) )
127, 8, 9, 10, 11syl22anc 1228 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  ( B  x.  1 ) )  mod 
B )  =  ( A  mod  B ) )
13 qsubcl 9567 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
147, 9, 13syl2anc 409 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  -  B )  e.  QQ )
15 simpr 109 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  <_  A  /\  A  <  (
2  x.  B ) ) )
16 qre 9554 . . . . . . . 8  |-  ( A  e.  QQ  ->  A  e.  RR )
177, 16syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  A  e.  RR )
18 qre 9554 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  RR )
199, 18syl 14 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  B  e.  RR )
2017, 19subge0d 8424 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 0  <_ 
( A  -  B
)  <->  B  <_  A ) )
2120bicomd 140 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( B  <_  A 
<->  0  <_  ( A  -  B ) ) )
2232timesd 9090 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 2  x.  B )  =  ( B  +  B ) )
2322breq2d 3988 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  < 
( 2  x.  B
)  <->  A  <  ( B  +  B ) ) )
2417, 19, 19ltsubaddd 8430 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  B )  < 
B  <->  A  <  ( B  +  B ) ) )
2523, 24bitr4d 190 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  < 
( 2  x.  B
)  <->  ( A  -  B )  <  B
) )
2621, 25anbi12d 465 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( B  <_  A  /\  A  <  ( 2  x.  B
) )  <->  ( 0  <_  ( A  -  B )  /\  ( A  -  B )  <  B ) ) )
2715, 26mpbid 146 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( 0  <_ 
( A  -  B
)  /\  ( A  -  B )  <  B
) )
28 modqid 10274 . . 3  |-  ( ( ( ( A  -  B )  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_ 
( A  -  B
)  /\  ( A  -  B )  <  B
) )  ->  (
( A  -  B
)  mod  B )  =  ( A  -  B ) )
2914, 9, 27, 28syl21anc 1226 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( ( A  -  B )  mod 
B )  =  ( A  -  B ) )
306, 12, 293eqtr3d 2205 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3976  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   1c1 7745    + caddc 7747    x. cmul 7749    < clt 7924    <_ cle 7925    - cmin 8060   2c2 8899   ZZcz 9182   QQcq 9548    mod cmo 10247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-q 9549  df-rp 9581  df-fl 10195  df-mod 10248
This theorem is referenced by:  modifeq2int  10311  modaddmodup  10312
  Copyright terms: Public domain W3C validator