| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > q2submod | Unicode version | ||
| Description: If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| q2submod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn 9711 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant2 1021 |
. . . . . 6
|
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | 3 | mulridd 8046 |
. . . 4
|
| 5 | 4 | oveq2d 5939 |
. . 3
|
| 6 | 5 | oveq1d 5938 |
. 2
|
| 7 | simpl1 1002 |
. . 3
| |
| 8 | 1zzd 9356 |
. . 3
| |
| 9 | simpl2 1003 |
. . 3
| |
| 10 | simpl3 1004 |
. . 3
| |
| 11 | modqcyc2 10455 |
. . 3
| |
| 12 | 7, 8, 9, 10, 11 | syl22anc 1250 |
. 2
|
| 13 | qsubcl 9715 |
. . . 4
| |
| 14 | 7, 9, 13 | syl2anc 411 |
. . 3
|
| 15 | simpr 110 |
. . . 4
| |
| 16 | qre 9702 |
. . . . . . . 8
| |
| 17 | 7, 16 | syl 14 |
. . . . . . 7
|
| 18 | qre 9702 |
. . . . . . . 8
| |
| 19 | 9, 18 | syl 14 |
. . . . . . 7
|
| 20 | 17, 19 | subge0d 8565 |
. . . . . 6
|
| 21 | 20 | bicomd 141 |
. . . . 5
|
| 22 | 3 | 2timesd 9237 |
. . . . . . 7
|
| 23 | 22 | breq2d 4046 |
. . . . . 6
|
| 24 | 17, 19, 19 | ltsubaddd 8571 |
. . . . . 6
|
| 25 | 23, 24 | bitr4d 191 |
. . . . 5
|
| 26 | 21, 25 | anbi12d 473 |
. . . 4
|
| 27 | 15, 26 | mpbid 147 |
. . 3
|
| 28 | modqid 10444 |
. . 3
| |
| 29 | 14, 9, 27, 28 | syl21anc 1248 |
. 2
|
| 30 | 6, 12, 29 | 3eqtr3d 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-n0 9253 df-z 9330 df-q 9697 df-rp 9732 df-fl 10363 df-mod 10418 |
| This theorem is referenced by: modifeq2int 10481 modaddmodup 10482 |
| Copyright terms: Public domain | W3C validator |