ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minabs Unicode version

Theorem minabs 11755
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
minabs  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )

Proof of Theorem minabs
StepHypRef Expression
1 minmax 11749 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
2 renegcl 8415 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
3 renegcl 8415 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
4 maxabs 11728 . . . . 5  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
52, 3, 4syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
65negeqd 8349 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
71, 6eqtrd 2262 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u (
( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  / 
2 ) )
8 simpl 109 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
98recnd 8183 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
109negcld 8452 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  e.  CC )
11 simpr 110 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
1211recnd 8183 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
1312negcld 8452 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  e.  CC )
1410, 13addcld 8174 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  +  -u B )  e.  CC )
1510, 13subcld 8465 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  -  -u B )  e.  CC )
1615abscld 11700 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  e.  RR )
1716recnd 8183 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  e.  CC )
1814, 17addcld 8174 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  e.  CC )
19 2cnd 9191 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
20 2ap0 9211 . . . 4  |-  2 #  0
2120a1i 9 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2 #  0 )
2218, 19, 21divnegapd 8958 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
)  =  ( -u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  / 
2 ) )
2314, 17negdi2d 8479 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  =  ( -u ( -u A  +  -u B )  -  ( abs `  ( -u A  -  -u B
) ) ) )
2410, 13negdid 8478 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( -u A  +  -u B )  =  ( -u -u A  +  -u -u B ) )
259negnegd 8456 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u A  =  A )
2612negnegd 8456 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u B  =  B )
2725, 26oveq12d 6025 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u -u A  +  -u -u B )  =  ( A  +  B
) )
2824, 27eqtrd 2262 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( -u A  +  -u B )  =  ( A  +  B
) )
299, 12neg2subd 8482 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  -  -u B )  =  ( B  -  A ) )
3029fveq2d 5633 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  =  ( abs `  ( B  -  A ) ) )
319, 12abssubd 11712 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
3230, 31eqtr4d 2265 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  =  ( abs `  ( A  -  B ) ) )
3328, 32oveq12d 6025 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( -u A  +  -u B )  -  ( abs `  ( -u A  -  -u B
) ) )  =  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )
3423, 33eqtrd 2262 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  =  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )
3534oveq1d 6022 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
)  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
367, 22, 353eqtrd 2266 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   supcsup 7157  infcinf 7158   RRcr 8006   0cc0 8007    + caddc 8010    < clt 8189    - cmin 8325   -ucneg 8326   # cap 8736    / cdiv 8827   2c2 9169   abscabs 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  bdtri  11759  mincncf  15298
  Copyright terms: Public domain W3C validator