ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minabs Unicode version

Theorem minabs 11210
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
minabs  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )

Proof of Theorem minabs
StepHypRef Expression
1 minmax 11204 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
2 renegcl 8192 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
3 renegcl 8192 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
4 maxabs 11184 . . . . 5  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
52, 3, 4syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
65negeqd 8126 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
71, 6eqtrd 2208 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u (
( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  / 
2 ) )
8 simpl 109 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
98recnd 7960 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
109negcld 8229 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  e.  CC )
11 simpr 110 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
1211recnd 7960 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
1312negcld 8229 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  e.  CC )
1410, 13addcld 7951 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  +  -u B )  e.  CC )
1510, 13subcld 8242 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  -  -u B )  e.  CC )
1615abscld 11156 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  e.  RR )
1716recnd 7960 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  e.  CC )
1814, 17addcld 7951 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  e.  CC )
19 2cnd 8963 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
20 2ap0 8983 . . . 4  |-  2 #  0
2120a1i 9 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2 #  0 )
2218, 19, 21divnegapd 8732 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
)  =  ( -u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  / 
2 ) )
2314, 17negdi2d 8256 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  =  ( -u ( -u A  +  -u B )  -  ( abs `  ( -u A  -  -u B
) ) ) )
2410, 13negdid 8255 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( -u A  +  -u B )  =  ( -u -u A  +  -u -u B ) )
259negnegd 8233 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u A  =  A )
2612negnegd 8233 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u B  =  B )
2725, 26oveq12d 5883 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u -u A  +  -u -u B )  =  ( A  +  B
) )
2824, 27eqtrd 2208 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( -u A  +  -u B )  =  ( A  +  B
) )
299, 12neg2subd 8259 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  -  -u B )  =  ( B  -  A ) )
3029fveq2d 5511 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  =  ( abs `  ( B  -  A ) ) )
319, 12abssubd 11168 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
3230, 31eqtr4d 2211 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  =  ( abs `  ( A  -  B ) ) )
3328, 32oveq12d 5883 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( -u A  +  -u B )  -  ( abs `  ( -u A  -  -u B
) ) )  =  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )
3423, 33eqtrd 2208 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  =  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )
3534oveq1d 5880 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
)  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
367, 22, 353eqtrd 2212 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   {cpr 3590   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   supcsup 6971  infcinf 6972   RRcr 7785   0cc0 7786    + caddc 7789    < clt 7966    - cmin 8102   -ucneg 8103   # cap 8512    / cdiv 8601   2c2 8941   abscabs 10972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-rp 9623  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974
This theorem is referenced by:  bdtri  11214
  Copyright terms: Public domain W3C validator