ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minabs Unicode version

Theorem minabs 11163
Description: The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
minabs  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )

Proof of Theorem minabs
StepHypRef Expression
1 minmax 11157 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
2 renegcl 8150 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
3 renegcl 8150 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
4 maxabs 11137 . . . . 5  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
52, 3, 4syl2an 287 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
65negeqd 8084 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
) )
71, 6eqtrd 2197 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u (
( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  / 
2 ) )
8 simpl 108 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
98recnd 7918 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
109negcld 8187 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  e.  CC )
11 simpr 109 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
1211recnd 7918 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
1312negcld 8187 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  e.  CC )
1410, 13addcld 7909 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  +  -u B )  e.  CC )
1510, 13subcld 8200 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  -  -u B )  e.  CC )
1615abscld 11109 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  e.  RR )
1716recnd 7918 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  e.  CC )
1814, 17addcld 7909 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  e.  CC )
19 2cnd 8921 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
20 2ap0 8941 . . . 4  |-  2 #  0
2120a1i 9 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2 #  0 )
2218, 19, 21divnegapd 8690 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
)  =  ( -u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  / 
2 ) )
2314, 17negdi2d 8214 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  =  ( -u ( -u A  +  -u B )  -  ( abs `  ( -u A  -  -u B
) ) ) )
2410, 13negdid 8213 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( -u A  +  -u B )  =  ( -u -u A  +  -u -u B ) )
259negnegd 8191 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u A  =  A )
2612negnegd 8191 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u B  =  B )
2725, 26oveq12d 5854 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u -u A  +  -u -u B )  =  ( A  +  B
) )
2824, 27eqtrd 2197 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( -u A  +  -u B )  =  ( A  +  B
) )
299, 12neg2subd 8217 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  -  -u B )  =  ( B  -  A ) )
3029fveq2d 5484 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  =  ( abs `  ( B  -  A ) ) )
319, 12abssubd 11121 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
3230, 31eqtr4d 2200 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( -u A  -  -u B
) )  =  ( abs `  ( A  -  B ) ) )
3328, 32oveq12d 5854 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( -u A  +  -u B )  -  ( abs `  ( -u A  -  -u B
) ) )  =  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )
3423, 33eqtrd 2197 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( ( -u A  +  -u B )  +  ( abs `  ( -u A  -  -u B
) ) )  =  ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) )
3534oveq1d 5851 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( (
-u A  +  -u B )  +  ( abs `  ( -u A  -  -u B ) ) )  /  2
)  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
367, 22, 353eqtrd 2201 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  -  ( abs `  ( A  -  B
) ) )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   {cpr 3571   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   supcsup 6938  infcinf 6939   RRcr 7743   0cc0 7744    + caddc 7747    < clt 7924    - cmin 8060   -ucneg 8061   # cap 8470    / cdiv 8559   2c2 8899   abscabs 10925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by:  bdtri  11167
  Copyright terms: Public domain W3C validator