ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsmulrfval Unicode version

Theorem prdsmulrfval 13327
Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y  |-  Y  =  ( S X_s R )
prdsbasmpt.b  |-  B  =  ( Base `  Y
)
prdsbasmpt.s  |-  ( ph  ->  S  e.  V )
prdsbasmpt.i  |-  ( ph  ->  I  e.  W )
prdsbasmpt.r  |-  ( ph  ->  R  Fn  I )
prdsplusgval.f  |-  ( ph  ->  F  e.  B )
prdsplusgval.g  |-  ( ph  ->  G  e.  B )
prdsmulrval.t  |-  .x.  =  ( .r `  Y )
prdsmulrfval.j  |-  ( ph  ->  J  e.  I )
Assertion
Ref Expression
prdsmulrfval  |-  ( ph  ->  ( ( F  .x.  G ) `  J
)  =  ( ( F `  J ) ( .r `  ( R `  J )
) ( G `  J ) ) )

Proof of Theorem prdsmulrfval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . . 4  |-  Y  =  ( S X_s R )
2 prdsbasmpt.b . . . 4  |-  B  =  ( Base `  Y
)
3 prdsbasmpt.s . . . 4  |-  ( ph  ->  S  e.  V )
4 prdsbasmpt.i . . . 4  |-  ( ph  ->  I  e.  W )
5 prdsbasmpt.r . . . 4  |-  ( ph  ->  R  Fn  I )
6 prdsplusgval.f . . . 4  |-  ( ph  ->  F  e.  B )
7 prdsplusgval.g . . . 4  |-  ( ph  ->  G  e.  B )
8 prdsmulrval.t . . . 4  |-  .x.  =  ( .r `  Y )
91, 2, 3, 4, 5, 6, 7, 8prdsmulrval 13326 . . 3  |-  ( ph  ->  ( F  .x.  G
)  =  ( x  e.  I  |->  ( ( F `  x ) ( .r `  ( R `  x )
) ( G `  x ) ) ) )
109fveq1d 5631 . 2  |-  ( ph  ->  ( ( F  .x.  G ) `  J
)  =  ( ( x  e.  I  |->  ( ( F `  x
) ( .r `  ( R `  x ) ) ( G `  x ) ) ) `
 J ) )
11 eqid 2229 . . 3  |-  ( x  e.  I  |->  ( ( F `  x ) ( .r `  ( R `  x )
) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `
 x ) ( .r `  ( R `
 x ) ) ( G `  x
) ) )
12 2fveq3 5634 . . . 4  |-  ( x  =  J  ->  ( .r `  ( R `  x ) )  =  ( .r `  ( R `  J )
) )
13 fveq2 5629 . . . 4  |-  ( x  =  J  ->  ( F `  x )  =  ( F `  J ) )
14 fveq2 5629 . . . 4  |-  ( x  =  J  ->  ( G `  x )  =  ( G `  J ) )
1512, 13, 14oveq123d 6028 . . 3  |-  ( x  =  J  ->  (
( F `  x
) ( .r `  ( R `  x ) ) ( G `  x ) )  =  ( ( F `  J ) ( .r
`  ( R `  J ) ) ( G `  J ) ) )
16 prdsmulrfval.j . . 3  |-  ( ph  ->  J  e.  I )
17 fvexg 5648 . . . . 5  |-  ( ( F  e.  B  /\  J  e.  I )  ->  ( F `  J
)  e.  _V )
186, 16, 17syl2anc 411 . . . 4  |-  ( ph  ->  ( F `  J
)  e.  _V )
19 fnex 5865 . . . . . . 7  |-  ( ( R  Fn  I  /\  I  e.  W )  ->  R  e.  _V )
205, 4, 19syl2anc 411 . . . . . 6  |-  ( ph  ->  R  e.  _V )
21 fvexg 5648 . . . . . 6  |-  ( ( R  e.  _V  /\  J  e.  I )  ->  ( R `  J
)  e.  _V )
2220, 16, 21syl2anc 411 . . . . 5  |-  ( ph  ->  ( R `  J
)  e.  _V )
23 mulrslid 13173 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2423slotex 13067 . . . . 5  |-  ( ( R `  J )  e.  _V  ->  ( .r `  ( R `  J ) )  e. 
_V )
2522, 24syl 14 . . . 4  |-  ( ph  ->  ( .r `  ( R `  J )
)  e.  _V )
26 fvexg 5648 . . . . 5  |-  ( ( G  e.  B  /\  J  e.  I )  ->  ( G `  J
)  e.  _V )
277, 16, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( G `  J
)  e.  _V )
28 ovexg 6041 . . . 4  |-  ( ( ( F `  J
)  e.  _V  /\  ( .r `  ( R `
 J ) )  e.  _V  /\  ( G `  J )  e.  _V )  ->  (
( F `  J
) ( .r `  ( R `  J ) ) ( G `  J ) )  e. 
_V )
2918, 25, 27, 28syl3anc 1271 . . 3  |-  ( ph  ->  ( ( F `  J ) ( .r
`  ( R `  J ) ) ( G `  J ) )  e.  _V )
3011, 15, 16, 29fvmptd3 5730 . 2  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( F `
 x ) ( .r `  ( R `
 x ) ) ( G `  x
) ) ) `  J )  =  ( ( F `  J
) ( .r `  ( R `  J ) ) ( G `  J ) ) )
3110, 30eqtrd 2262 1  |-  ( ph  ->  ( ( F  .x.  G ) `  J
)  =  ( ( F `  J ) ( .r `  ( R `  J )
) ( G `  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318  (class class class)co 6007   Basecbs 13040   .rcmulr 13119   X_scprds 13306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-fz 10213  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-hom 13142  df-cco 13143  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-prds 13308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator