| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqcaopr3g | Unicode version | ||
| Description: Lemma for seqcaopr2g 10656. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| seqcaopr3.1 |
|
| seqcaopr3.2 |
|
| seqcaopr3.3 |
|
| seqcaopr3.4 |
|
| seqcaopr3.5 |
|
| seqcaopr3.6 |
|
| seqcaopr3g.p |
|
| seqcaopr3g.f |
|
| seqcaopr3g.g |
|
| seqcaopr3g.h |
|
| seqcaopr3.7 |
|
| Ref | Expression |
|---|---|
| seqcaopr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr3.3 |
. . 3
| |
| 2 | eluzfz2 10169 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | fveq2 5588 |
. . . . 5
| |
| 5 | fveq2 5588 |
. . . . . 6
| |
| 6 | fveq2 5588 |
. . . . . 6
| |
| 7 | 5, 6 | oveq12d 5974 |
. . . . 5
|
| 8 | 4, 7 | eqeq12d 2221 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | fveq2 5588 |
. . . . 5
| |
| 11 | fveq2 5588 |
. . . . . 6
| |
| 12 | fveq2 5588 |
. . . . . 6
| |
| 13 | 11, 12 | oveq12d 5974 |
. . . . 5
|
| 14 | 10, 13 | eqeq12d 2221 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | fveq2 5588 |
. . . . 5
| |
| 17 | fveq2 5588 |
. . . . . 6
| |
| 18 | fveq2 5588 |
. . . . . 6
| |
| 19 | 17, 18 | oveq12d 5974 |
. . . . 5
|
| 20 | 16, 19 | eqeq12d 2221 |
. . . 4
|
| 21 | 20 | imbi2d 230 |
. . 3
|
| 22 | fveq2 5588 |
. . . . 5
| |
| 23 | fveq2 5588 |
. . . . . 6
| |
| 24 | fveq2 5588 |
. . . . . 6
| |
| 25 | 23, 24 | oveq12d 5974 |
. . . . 5
|
| 26 | 22, 25 | eqeq12d 2221 |
. . . 4
|
| 27 | 26 | imbi2d 230 |
. . 3
|
| 28 | fveq2 5588 |
. . . . . . 7
| |
| 29 | fveq2 5588 |
. . . . . . . 8
| |
| 30 | fveq2 5588 |
. . . . . . . 8
| |
| 31 | 29, 30 | oveq12d 5974 |
. . . . . . 7
|
| 32 | 28, 31 | eqeq12d 2221 |
. . . . . 6
|
| 33 | seqcaopr3.6 |
. . . . . . 7
| |
| 34 | 33 | ralrimiva 2580 |
. . . . . 6
|
| 35 | eluzfz1 10168 |
. . . . . . 7
| |
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | 32, 34, 36 | rspcdva 2886 |
. . . . 5
|
| 38 | eluzel2 9668 |
. . . . . . 7
| |
| 39 | 1, 38 | syl 14 |
. . . . . 6
|
| 40 | seqcaopr3g.h |
. . . . . 6
| |
| 41 | seqcaopr3g.p |
. . . . . 6
| |
| 42 | seq1g 10625 |
. . . . . 6
| |
| 43 | 39, 40, 41, 42 | syl3anc 1250 |
. . . . 5
|
| 44 | seqcaopr3g.f |
. . . . . . 7
| |
| 45 | seq1g 10625 |
. . . . . . 7
| |
| 46 | 39, 44, 41, 45 | syl3anc 1250 |
. . . . . 6
|
| 47 | seqcaopr3g.g |
. . . . . . 7
| |
| 48 | seq1g 10625 |
. . . . . . 7
| |
| 49 | 39, 47, 41, 48 | syl3anc 1250 |
. . . . . 6
|
| 50 | 46, 49 | oveq12d 5974 |
. . . . 5
|
| 51 | 37, 43, 50 | 3eqtr4d 2249 |
. . . 4
|
| 52 | 51 | a1i 9 |
. . 3
|
| 53 | oveq1 5963 |
. . . . . 6
| |
| 54 | elfzouz 10288 |
. . . . . . . . 9
| |
| 55 | 54 | adantl 277 |
. . . . . . . 8
|
| 56 | 40 | adantr 276 |
. . . . . . . 8
|
| 57 | 41 | adantr 276 |
. . . . . . . 8
|
| 58 | seqp1g 10628 |
. . . . . . . 8
| |
| 59 | 55, 56, 57, 58 | syl3anc 1250 |
. . . . . . 7
|
| 60 | seqcaopr3.7 |
. . . . . . . 8
| |
| 61 | fveq2 5588 |
. . . . . . . . . . 11
| |
| 62 | fveq2 5588 |
. . . . . . . . . . . 12
| |
| 63 | fveq2 5588 |
. . . . . . . . . . . 12
| |
| 64 | 62, 63 | oveq12d 5974 |
. . . . . . . . . . 11
|
| 65 | 61, 64 | eqeq12d 2221 |
. . . . . . . . . 10
|
| 66 | 34 | adantr 276 |
. . . . . . . . . 10
|
| 67 | fzofzp1 10373 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantl 277 |
. . . . . . . . . 10
|
| 69 | 65, 66, 68 | rspcdva 2886 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 5972 |
. . . . . . . 8
|
| 71 | 44 | adantr 276 |
. . . . . . . . . 10
|
| 72 | seqp1g 10628 |
. . . . . . . . . 10
| |
| 73 | 55, 71, 57, 72 | syl3anc 1250 |
. . . . . . . . 9
|
| 74 | 47 | adantr 276 |
. . . . . . . . . 10
|
| 75 | seqp1g 10628 |
. . . . . . . . . 10
| |
| 76 | 55, 74, 57, 75 | syl3anc 1250 |
. . . . . . . . 9
|
| 77 | 73, 76 | oveq12d 5974 |
. . . . . . . 8
|
| 78 | 60, 70, 77 | 3eqtr4rd 2250 |
. . . . . . 7
|
| 79 | 59, 78 | eqeq12d 2221 |
. . . . . 6
|
| 80 | 53, 79 | imbitrrid 156 |
. . . . 5
|
| 81 | 80 | expcom 116 |
. . . 4
|
| 82 | 81 | a2d 26 |
. . 3
|
| 83 | 9, 15, 21, 27, 52, 82 | fzind2 10385 |
. 2
|
| 84 | 3, 83 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 df-seqfrec 10610 |
| This theorem is referenced by: seqcaopr2g 10656 |
| Copyright terms: Public domain | W3C validator |