| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqcaopr3g | Unicode version | ||
| Description: Lemma for seqcaopr2g 10703. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| seqcaopr3.1 |
|
| seqcaopr3.2 |
|
| seqcaopr3.3 |
|
| seqcaopr3.4 |
|
| seqcaopr3.5 |
|
| seqcaopr3.6 |
|
| seqcaopr3g.p |
|
| seqcaopr3g.f |
|
| seqcaopr3g.g |
|
| seqcaopr3g.h |
|
| seqcaopr3.7 |
|
| Ref | Expression |
|---|---|
| seqcaopr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr3.3 |
. . 3
| |
| 2 | eluzfz2 10216 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | fveq2 5623 |
. . . . 5
| |
| 5 | fveq2 5623 |
. . . . . 6
| |
| 6 | fveq2 5623 |
. . . . . 6
| |
| 7 | 5, 6 | oveq12d 6012 |
. . . . 5
|
| 8 | 4, 7 | eqeq12d 2244 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | fveq2 5623 |
. . . . 5
| |
| 11 | fveq2 5623 |
. . . . . 6
| |
| 12 | fveq2 5623 |
. . . . . 6
| |
| 13 | 11, 12 | oveq12d 6012 |
. . . . 5
|
| 14 | 10, 13 | eqeq12d 2244 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | fveq2 5623 |
. . . . 5
| |
| 17 | fveq2 5623 |
. . . . . 6
| |
| 18 | fveq2 5623 |
. . . . . 6
| |
| 19 | 17, 18 | oveq12d 6012 |
. . . . 5
|
| 20 | 16, 19 | eqeq12d 2244 |
. . . 4
|
| 21 | 20 | imbi2d 230 |
. . 3
|
| 22 | fveq2 5623 |
. . . . 5
| |
| 23 | fveq2 5623 |
. . . . . 6
| |
| 24 | fveq2 5623 |
. . . . . 6
| |
| 25 | 23, 24 | oveq12d 6012 |
. . . . 5
|
| 26 | 22, 25 | eqeq12d 2244 |
. . . 4
|
| 27 | 26 | imbi2d 230 |
. . 3
|
| 28 | fveq2 5623 |
. . . . . . 7
| |
| 29 | fveq2 5623 |
. . . . . . . 8
| |
| 30 | fveq2 5623 |
. . . . . . . 8
| |
| 31 | 29, 30 | oveq12d 6012 |
. . . . . . 7
|
| 32 | 28, 31 | eqeq12d 2244 |
. . . . . 6
|
| 33 | seqcaopr3.6 |
. . . . . . 7
| |
| 34 | 33 | ralrimiva 2603 |
. . . . . 6
|
| 35 | eluzfz1 10215 |
. . . . . . 7
| |
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | 32, 34, 36 | rspcdva 2912 |
. . . . 5
|
| 38 | eluzel2 9715 |
. . . . . . 7
| |
| 39 | 1, 38 | syl 14 |
. . . . . 6
|
| 40 | seqcaopr3g.h |
. . . . . 6
| |
| 41 | seqcaopr3g.p |
. . . . . 6
| |
| 42 | seq1g 10672 |
. . . . . 6
| |
| 43 | 39, 40, 41, 42 | syl3anc 1271 |
. . . . 5
|
| 44 | seqcaopr3g.f |
. . . . . . 7
| |
| 45 | seq1g 10672 |
. . . . . . 7
| |
| 46 | 39, 44, 41, 45 | syl3anc 1271 |
. . . . . 6
|
| 47 | seqcaopr3g.g |
. . . . . . 7
| |
| 48 | seq1g 10672 |
. . . . . . 7
| |
| 49 | 39, 47, 41, 48 | syl3anc 1271 |
. . . . . 6
|
| 50 | 46, 49 | oveq12d 6012 |
. . . . 5
|
| 51 | 37, 43, 50 | 3eqtr4d 2272 |
. . . 4
|
| 52 | 51 | a1i 9 |
. . 3
|
| 53 | oveq1 6001 |
. . . . . 6
| |
| 54 | elfzouz 10335 |
. . . . . . . . 9
| |
| 55 | 54 | adantl 277 |
. . . . . . . 8
|
| 56 | 40 | adantr 276 |
. . . . . . . 8
|
| 57 | 41 | adantr 276 |
. . . . . . . 8
|
| 58 | seqp1g 10675 |
. . . . . . . 8
| |
| 59 | 55, 56, 57, 58 | syl3anc 1271 |
. . . . . . 7
|
| 60 | seqcaopr3.7 |
. . . . . . . 8
| |
| 61 | fveq2 5623 |
. . . . . . . . . . 11
| |
| 62 | fveq2 5623 |
. . . . . . . . . . . 12
| |
| 63 | fveq2 5623 |
. . . . . . . . . . . 12
| |
| 64 | 62, 63 | oveq12d 6012 |
. . . . . . . . . . 11
|
| 65 | 61, 64 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 66 | 34 | adantr 276 |
. . . . . . . . . 10
|
| 67 | fzofzp1 10420 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantl 277 |
. . . . . . . . . 10
|
| 69 | 65, 66, 68 | rspcdva 2912 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 6010 |
. . . . . . . 8
|
| 71 | 44 | adantr 276 |
. . . . . . . . . 10
|
| 72 | seqp1g 10675 |
. . . . . . . . . 10
| |
| 73 | 55, 71, 57, 72 | syl3anc 1271 |
. . . . . . . . 9
|
| 74 | 47 | adantr 276 |
. . . . . . . . . 10
|
| 75 | seqp1g 10675 |
. . . . . . . . . 10
| |
| 76 | 55, 74, 57, 75 | syl3anc 1271 |
. . . . . . . . 9
|
| 77 | 73, 76 | oveq12d 6012 |
. . . . . . . 8
|
| 78 | 60, 70, 77 | 3eqtr4rd 2273 |
. . . . . . 7
|
| 79 | 59, 78 | eqeq12d 2244 |
. . . . . 6
|
| 80 | 53, 79 | imbitrrid 156 |
. . . . 5
|
| 81 | 80 | expcom 116 |
. . . 4
|
| 82 | 81 | a2d 26 |
. . 3
|
| 83 | 9, 15, 21, 27, 52, 82 | fzind2 10432 |
. 2
|
| 84 | 3, 83 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-fzo 10327 df-seqfrec 10657 |
| This theorem is referenced by: seqcaopr2g 10703 |
| Copyright terms: Public domain | W3C validator |