ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqcaopr3g Unicode version

Theorem seqcaopr3g 10701
Description: Lemma for seqcaopr2g 10703. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqcaopr3.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr3.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
seqcaopr3.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcaopr3.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcaopr3.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
seqcaopr3.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
seqcaopr3g.p  |-  ( ph  ->  .+  e.  V )
seqcaopr3g.f  |-  ( ph  ->  F  e.  W )
seqcaopr3g.g  |-  ( ph  ->  G  e.  X )
seqcaopr3g.h  |-  ( ph  ->  H  e.  Y )
seqcaopr3.7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
Assertion
Ref Expression
seqcaopr3g  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Distinct variable groups:    k, n, x, y, F    k, H, n    k, N, n, x, y    ph, k, n, x, y    k, G, n, x, y    k, M, n, x, y    Q, k, n, x, y    .+ , n, x, y    S, k, x, y
Allowed substitution hints:    .+ ( k)    S( n)    H( x, y)    V( x, y, k, n)    W( x, y, k, n)    X( x, y, k, n)    Y( x, y, k, n)

Proof of Theorem seqcaopr3g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 seqcaopr3.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10216 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5623 . . . . 5  |-  ( z  =  M  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  M
) )
5 fveq2 5623 . . . . . 6  |-  ( z  =  M  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fveq2 5623 . . . . . 6  |-  ( z  =  M  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  M
) )
75, 6oveq12d 6012 . . . . 5  |-  ( z  =  M  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 M ) Q (  seq M ( 
.+  ,  G ) `
 M ) ) )
84, 7eqeq12d 2244 . . . 4  |-  ( z  =  M  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  M
)  =  ( (  seq M (  .+  ,  F ) `  M
) Q (  seq M (  .+  ,  G ) `  M
) ) ) )
98imbi2d 230 . . 3  |-  ( z  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) ) ) )
10 fveq2 5623 . . . . 5  |-  ( z  =  n  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  n
) )
11 fveq2 5623 . . . . . 6  |-  ( z  =  n  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fveq2 5623 . . . . . 6  |-  ( z  =  n  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  n
) )
1311, 12oveq12d 6012 . . . . 5  |-  ( z  =  n  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 n ) Q (  seq M ( 
.+  ,  G ) `
 n ) ) )
1410, 13eqeq12d 2244 . . . 4  |-  ( z  =  n  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) ) ) )
1514imbi2d 230 . . 3  |-  ( z  =  n  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 n )  =  ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
) ) ) )
16 fveq2 5623 . . . . 5  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  (
n  +  1 ) ) )
17 fveq2 5623 . . . . . 6  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fveq2 5623 . . . . . 6  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )
1917, 18oveq12d 6012 . . . . 5  |-  ( z  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) Q (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) ) ) )
2016, 19eqeq12d 2244 . . . 4  |-  ( z  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
2120imbi2d 230 . . 3  |-  ( z  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  ( n  +  1 ) ) Q (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
22 fveq2 5623 . . . . 5  |-  ( z  =  N  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  N
) )
23 fveq2 5623 . . . . . 6  |-  ( z  =  N  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fveq2 5623 . . . . . 6  |-  ( z  =  N  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  N
) )
2523, 24oveq12d 6012 . . . . 5  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N ) Q (  seq M ( 
.+  ,  G ) `
 N ) ) )
2622, 25eqeq12d 2244 . . . 4  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  N
) Q (  seq M (  .+  ,  G ) `  N
) ) ) )
2726imbi2d 230 . . 3  |-  ( z  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) ) ) )
28 fveq2 5623 . . . . . . 7  |-  ( k  =  M  ->  ( H `  k )  =  ( H `  M ) )
29 fveq2 5623 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
30 fveq2 5623 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
3129, 30oveq12d 6012 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
) Q ( G `
 k ) )  =  ( ( F `
 M ) Q ( G `  M
) ) )
3228, 31eqeq12d 2244 . . . . . 6  |-  ( k  =  M  ->  (
( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) )  <->  ( H `  M )  =  ( ( F `  M
) Q ( G `
 M ) ) ) )
33 seqcaopr3.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
3433ralrimiva 2603 . . . . . 6  |-  ( ph  ->  A. k  e.  ( M ... N ) ( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) ) )
35 eluzfz1 10215 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
361, 35syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
3732, 34, 36rspcdva 2912 . . . . 5  |-  ( ph  ->  ( H `  M
)  =  ( ( F `  M ) Q ( G `  M ) ) )
38 eluzel2 9715 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
391, 38syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
40 seqcaopr3g.h . . . . . 6  |-  ( ph  ->  H  e.  Y )
41 seqcaopr3g.p . . . . . 6  |-  ( ph  ->  .+  e.  V )
42 seq1g 10672 . . . . . 6  |-  ( ( M  e.  ZZ  /\  H  e.  Y  /\  .+  e.  V )  -> 
(  seq M (  .+  ,  H ) `  M
)  =  ( H `
 M ) )
4339, 40, 41, 42syl3anc 1271 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( H `  M
) )
44 seqcaopr3g.f . . . . . . 7  |-  ( ph  ->  F  e.  W )
45 seq1g 10672 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  F  e.  W  /\  .+  e.  V )  -> 
(  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
4639, 44, 41, 45syl3anc 1271 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
47 seqcaopr3g.g . . . . . . 7  |-  ( ph  ->  G  e.  X )
48 seq1g 10672 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  G  e.  X  /\  .+  e.  V )  -> 
(  seq M (  .+  ,  G ) `  M
)  =  ( G `
 M ) )
4939, 47, 41, 48syl3anc 1271 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 M )  =  ( G `  M
) )
5046, 49oveq12d 6012 . . . . 5  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
)  =  ( ( F `  M ) Q ( G `  M ) ) )
5137, 43, 503eqtr4d 2272 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) )
5251a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) ) )
53 oveq1 6001 . . . . . 6  |-  ( (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (
(  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) ) )
54 elfzouz 10335 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
5554adantl 277 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
5640adantr 276 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  H  e.  Y
)
5741adantr 276 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  .+  e.  V
)
58 seqp1g 10675 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  H  e.  Y  /\  .+  e.  V )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) ) )
5955, 56, 57, 58syl3anc 1271 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  H
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) ) )
60 seqcaopr3.7 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
61 fveq2 5623 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  ( H `  k )  =  ( H `  ( n  +  1
) ) )
62 fveq2 5623 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
63 fveq2 5623 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
6462, 63oveq12d 6012 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) Q ( G `
 k ) )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) )
6561, 64eqeq12d 2244 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  (
( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) )  <->  ( H `  ( n  +  1 ) )  =  ( ( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) ) )
6634adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) ( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) ) )
67 fzofzp1 10420 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
6867adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  ( M ... N ) )
6965, 66, 68rspcdva 2912 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( H `  ( n  +  1
) )  =  ( ( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )
7069oveq2d 6010 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n ) Q (  seq M ( 
.+  ,  G ) `
 n ) ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) ) )
7144adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  F  e.  W
)
72 seqp1g 10675 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  F  e.  W  /\  .+  e.  V )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
7355, 71, 57, 72syl3anc 1271 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
7447adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  G  e.  X
)
75 seqp1g 10675 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  G  e.  X  /\  .+  e.  V )  ->  (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
7655, 74, 57, 75syl3anc 1271 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
7773, 76oveq12d 6012 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  ( n  +  1 ) ) ) ) )
7860, 70, 773eqtr4rd 2273 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( H `  ( n  +  1 ) ) ) )
7959, 78eqeq12d 2244 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  <->  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) ) ) )
8053, 79imbitrrid 156 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
8180expcom 116 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  H
) `  n )  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
8281a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  H
) `  n )  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) ) )  -> 
( ph  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
839, 15, 21, 27, 52, 82fzind2 10432 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  H
) `  N )  =  ( (  seq M (  .+  ,  F ) `  N
) Q (  seq M (  .+  ,  G ) `  N
) ) ) )
843, 83mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5314  (class class class)co 5994   1c1 7988    + caddc 7990   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192  ..^cfzo 10326    seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657
This theorem is referenced by:  seqcaopr2g  10703
  Copyright terms: Public domain W3C validator