| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqcaopr2g | Unicode version | ||
| Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) |
| Ref | Expression |
|---|---|
| seqcaopr2.1 |
|
| seqcaopr2.2 |
|
| seqcaopr2.3 |
|
| seqcaopr2.4 |
|
| seqcaopr2.5 |
|
| seqcaopr2.6 |
|
| seqcaopr2.7 |
|
| seqcaopr2g.p |
|
| seqcaopr2g.f |
|
| seqcaopr2g.g |
|
| seqcaopr2g.h |
|
| Ref | Expression |
|---|---|
| seqcaopr2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr2.1 |
. 2
| |
| 2 | seqcaopr2.2 |
. 2
| |
| 3 | seqcaopr2.4 |
. 2
| |
| 4 | seqcaopr2.5 |
. 2
| |
| 5 | seqcaopr2.6 |
. 2
| |
| 6 | seqcaopr2.7 |
. 2
| |
| 7 | seqcaopr2g.p |
. 2
| |
| 8 | seqcaopr2g.f |
. 2
| |
| 9 | seqcaopr2g.g |
. 2
| |
| 10 | seqcaopr2g.h |
. 2
| |
| 11 | elfzouz 10223 |
. . . . 5
| |
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | elfzouz2 10234 |
. . . . . . . 8
| |
| 14 | 13 | adantl 277 |
. . . . . . 7
|
| 15 | fzss2 10136 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 16 | sselda 3183 |
. . . . 5
|
| 18 | 5 | ralrimiva 2570 |
. . . . . . 7
|
| 19 | 18 | adantr 276 |
. . . . . 6
|
| 20 | fveq2 5558 |
. . . . . . . 8
| |
| 21 | 20 | eleq1d 2265 |
. . . . . . 7
|
| 22 | 21 | rspccva 2867 |
. . . . . 6
|
| 23 | 19, 22 | sylan 283 |
. . . . 5
|
| 24 | 17, 23 | syldan 282 |
. . . 4
|
| 25 | 1 | adantlr 477 |
. . . 4
|
| 26 | 9 | adantr 276 |
. . . 4
|
| 27 | 7 | adantr 276 |
. . . 4
|
| 28 | 12, 24, 25, 26, 27 | seqclg 10549 |
. . 3
|
| 29 | fzofzp1 10300 |
. . . 4
| |
| 30 | fveq2 5558 |
. . . . . 6
| |
| 31 | 30 | eleq1d 2265 |
. . . . 5
|
| 32 | 31 | rspccva 2867 |
. . . 4
|
| 33 | 18, 29, 32 | syl2an 289 |
. . 3
|
| 34 | 4 | ralrimiva 2570 |
. . . . . . . 8
|
| 35 | fveq2 5558 |
. . . . . . . . . 10
| |
| 36 | 35 | eleq1d 2265 |
. . . . . . . . 9
|
| 37 | 36 | rspccva 2867 |
. . . . . . . 8
|
| 38 | 34, 37 | sylan 283 |
. . . . . . 7
|
| 39 | 38 | adantlr 477 |
. . . . . 6
|
| 40 | 17, 39 | syldan 282 |
. . . . 5
|
| 41 | 8 | adantr 276 |
. . . . 5
|
| 42 | 12, 40, 25, 41, 27 | seqclg 10549 |
. . . 4
|
| 43 | fveq2 5558 |
. . . . . . 7
| |
| 44 | 43 | eleq1d 2265 |
. . . . . 6
|
| 45 | 44 | rspccva 2867 |
. . . . 5
|
| 46 | 34, 29, 45 | syl2an 289 |
. . . 4
|
| 47 | seqcaopr2.3 |
. . . . . . . 8
| |
| 48 | 47 | anassrs 400 |
. . . . . . 7
|
| 49 | 48 | ralrimivva 2579 |
. . . . . 6
|
| 50 | 49 | ralrimivva 2579 |
. . . . 5
|
| 51 | 50 | adantr 276 |
. . . 4
|
| 52 | oveq1 5929 |
. . . . . . . 8
| |
| 53 | 52 | oveq1d 5937 |
. . . . . . 7
|
| 54 | oveq1 5929 |
. . . . . . . 8
| |
| 55 | 54 | oveq1d 5937 |
. . . . . . 7
|
| 56 | 53, 55 | eqeq12d 2211 |
. . . . . 6
|
| 57 | 56 | 2ralbidv 2521 |
. . . . 5
|
| 58 | oveq1 5929 |
. . . . . . . 8
| |
| 59 | 58 | oveq2d 5938 |
. . . . . . 7
|
| 60 | oveq2 5930 |
. . . . . . . 8
| |
| 61 | 60 | oveq1d 5937 |
. . . . . . 7
|
| 62 | 59, 61 | eqeq12d 2211 |
. . . . . 6
|
| 63 | 62 | 2ralbidv 2521 |
. . . . 5
|
| 64 | 57, 63 | rspc2va 2882 |
. . . 4
|
| 65 | 42, 46, 51, 64 | syl21anc 1248 |
. . 3
|
| 66 | oveq2 5930 |
. . . . . 6
| |
| 67 | 66 | oveq1d 5937 |
. . . . 5
|
| 68 | oveq1 5929 |
. . . . . 6
| |
| 69 | 68 | oveq2d 5938 |
. . . . 5
|
| 70 | 67, 69 | eqeq12d 2211 |
. . . 4
|
| 71 | oveq2 5930 |
. . . . . 6
| |
| 72 | 71 | oveq2d 5938 |
. . . . 5
|
| 73 | oveq2 5930 |
. . . . . 6
| |
| 74 | 73 | oveq2d 5938 |
. . . . 5
|
| 75 | 72, 74 | eqeq12d 2211 |
. . . 4
|
| 76 | 70, 75 | rspc2va 2882 |
. . 3
|
| 77 | 28, 33, 65, 76 | syl21anc 1248 |
. 2
|
| 78 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 77 | seqcaopr3g 10569 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-ltadd 7993 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-inn 8988 df-n0 9247 df-z 9324 df-uz 9599 df-fz 10081 df-fzo 10215 df-seqfrec 10525 |
| This theorem is referenced by: seqcaoprg 10573 |
| Copyright terms: Public domain | W3C validator |