ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqcaoprg Unicode version

Theorem seqcaoprg 10705
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqcaopr.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqcaopr.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcaopr.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcaopr.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
seqcaopr.7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
seqcaoprg.p  |-  ( ph  ->  .+  e.  V )
seqcaoprg.f  |-  ( ph  ->  F  e.  W )
seqcaoprg.g  |-  ( ph  ->  G  e.  X )
seqcaoprg.h  |-  ( ph  ->  H  e.  Y )
Assertion
Ref Expression
seqcaoprg  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    x, k,
y, z, ph    k, M    .+ , k, x, y, z    S, k, x, y, z   
k, N
Allowed substitution hints:    F( x, y, z)    G( x, y, z)    H( x, y, z)    M( x, y, z)    N( x, y, z)    V( x, y, z, k)    W( x, y, z, k)    X( x, y, z, k)    Y( x, y, z, k)

Proof of Theorem seqcaoprg
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
21caovclg 6149 . 2  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
3 simpl 109 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  ->  ph )
4 simprrl 539 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
c  e.  S )
5 simprlr 538 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
b  e.  S )
6 seqcaopr.2 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
76caovcomg 6152 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
83, 4, 5, 7syl12anc 1269 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  b
)  =  ( b 
.+  c ) )
98oveq1d 6009 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( ( b  .+  c ) 
.+  d ) )
10 simprrr 540 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
d  e.  S )
11 seqcaopr.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
1211caovassg 6155 . . . . . 6  |-  ( (
ph  /\  ( c  e.  S  /\  b  e.  S  /\  d  e.  S ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
133, 4, 5, 10, 12syl13anc 1273 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( c  .+  b )  .+  d
)  =  ( c 
.+  ( b  .+  d ) ) )
1411caovassg 6155 . . . . . 6  |-  ( (
ph  /\  ( b  e.  S  /\  c  e.  S  /\  d  e.  S ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
153, 5, 4, 10, 14syl13anc 1273 . . . . 5  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( b  .+  c )  .+  d
)  =  ( b 
.+  ( c  .+  d ) ) )
169, 13, 153eqtr3d 2270 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  (
b  .+  d )
)  =  ( b 
.+  ( c  .+  d ) ) )
1716oveq2d 6010 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( a  .+  (
c  .+  ( b  .+  d ) ) )  =  ( a  .+  ( b  .+  (
c  .+  d )
) ) )
18 simprll 537 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
a  e.  S )
191caovclg 6149 . . . . 5  |-  ( (
ph  /\  ( b  e.  S  /\  d  e.  S ) )  -> 
( b  .+  d
)  e.  S )
203, 5, 10, 19syl12anc 1269 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( b  .+  d
)  e.  S )
2111caovassg 6155 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  c  e.  S  /\  (
b  .+  d )  e.  S ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
223, 18, 4, 20, 21syl13anc 1273 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( a 
.+  ( c  .+  ( b  .+  d
) ) ) )
231caovclg 6149 . . . . 5  |-  ( (
ph  /\  ( c  e.  S  /\  d  e.  S ) )  -> 
( c  .+  d
)  e.  S )
2423adantrl 478 . . . 4  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( c  .+  d
)  e.  S )
2511caovassg 6155 . . . 4  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S  /\  (
c  .+  d )  e.  S ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
263, 18, 5, 24, 25syl13anc 1273 . . 3  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  b )  .+  (
c  .+  d )
)  =  ( a 
.+  ( b  .+  ( c  .+  d
) ) ) )
2717, 22, 263eqtr4d 2272 . 2  |-  ( (
ph  /\  ( (
a  e.  S  /\  b  e.  S )  /\  ( c  e.  S  /\  d  e.  S
) ) )  -> 
( ( a  .+  c )  .+  (
b  .+  d )
)  =  ( ( a  .+  b ) 
.+  ( c  .+  d ) ) )
28 seqcaopr.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
29 seqcaopr.5 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
30 seqcaopr.6 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
31 seqcaopr.7 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
)  .+  ( G `  k ) ) )
32 seqcaoprg.p . 2  |-  ( ph  ->  .+  e.  V )
33 seqcaoprg.f . 2  |-  ( ph  ->  F  e.  W )
34 seqcaoprg.g . 2  |-  ( ph  ->  G  e.  X )
35 seqcaoprg.h . 2  |-  ( ph  ->  H  e.  Y )
362, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35seqcaopr2g 10703 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5314  (class class class)co 5994   ZZ>=cuz 9710   ...cfz 10192    seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657
This theorem is referenced by:  gsumfzmptfidmadd  13862
  Copyright terms: Public domain W3C validator