| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqcaoprg | Unicode version | ||
| Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.) |
| Ref | Expression |
|---|---|
| seqcaopr.1 |
|
| seqcaopr.2 |
|
| seqcaopr.3 |
|
| seqcaopr.4 |
|
| seqcaopr.5 |
|
| seqcaopr.6 |
|
| seqcaopr.7 |
|
| seqcaoprg.p |
|
| seqcaoprg.f |
|
| seqcaoprg.g |
|
| seqcaoprg.h |
|
| Ref | Expression |
|---|---|
| seqcaoprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr.1 |
. . 3
| |
| 2 | 1 | caovclg 6077 |
. 2
|
| 3 | simpl 109 |
. . . . . . 7
| |
| 4 | simprrl 539 |
. . . . . . 7
| |
| 5 | simprlr 538 |
. . . . . . 7
| |
| 6 | seqcaopr.2 |
. . . . . . . 8
| |
| 7 | 6 | caovcomg 6080 |
. . . . . . 7
|
| 8 | 3, 4, 5, 7 | syl12anc 1247 |
. . . . . 6
|
| 9 | 8 | oveq1d 5938 |
. . . . 5
|
| 10 | simprrr 540 |
. . . . . 6
| |
| 11 | seqcaopr.3 |
. . . . . . 7
| |
| 12 | 11 | caovassg 6083 |
. . . . . 6
|
| 13 | 3, 4, 5, 10, 12 | syl13anc 1251 |
. . . . 5
|
| 14 | 11 | caovassg 6083 |
. . . . . 6
|
| 15 | 3, 5, 4, 10, 14 | syl13anc 1251 |
. . . . 5
|
| 16 | 9, 13, 15 | 3eqtr3d 2237 |
. . . 4
|
| 17 | 16 | oveq2d 5939 |
. . 3
|
| 18 | simprll 537 |
. . . 4
| |
| 19 | 1 | caovclg 6077 |
. . . . 5
|
| 20 | 3, 5, 10, 19 | syl12anc 1247 |
. . . 4
|
| 21 | 11 | caovassg 6083 |
. . . 4
|
| 22 | 3, 18, 4, 20, 21 | syl13anc 1251 |
. . 3
|
| 23 | 1 | caovclg 6077 |
. . . . 5
|
| 24 | 23 | adantrl 478 |
. . . 4
|
| 25 | 11 | caovassg 6083 |
. . . 4
|
| 26 | 3, 18, 5, 24, 25 | syl13anc 1251 |
. . 3
|
| 27 | 17, 22, 26 | 3eqtr4d 2239 |
. 2
|
| 28 | seqcaopr.4 |
. 2
| |
| 29 | seqcaopr.5 |
. 2
| |
| 30 | seqcaopr.6 |
. 2
| |
| 31 | seqcaopr.7 |
. 2
| |
| 32 | seqcaoprg.p |
. 2
| |
| 33 | seqcaoprg.f |
. 2
| |
| 34 | seqcaoprg.g |
. 2
| |
| 35 | seqcaoprg.h |
. 2
| |
| 36 | 2, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35 | seqcaopr2g 10588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-n0 9252 df-z 9329 df-uz 9604 df-fz 10086 df-fzo 10220 df-seqfrec 10542 |
| This theorem is referenced by: gsumfzmptfidmadd 13479 |
| Copyright terms: Public domain | W3C validator |