ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqcaoprg GIF version

Theorem seqcaoprg 10705
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqcaopr.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqcaopr.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr.7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
seqcaoprg.p (𝜑+𝑉)
seqcaoprg.f (𝜑𝐹𝑊)
seqcaoprg.g (𝜑𝐺𝑋)
seqcaoprg.h (𝜑𝐻𝑌)
Assertion
Ref Expression
seqcaoprg (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑥,𝑘,𝑦,𝑧,𝜑   𝑘,𝑀   + ,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑘,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑘)   𝑌(𝑥,𝑦,𝑧,𝑘)

Proof of Theorem seqcaoprg
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21caovclg 6149 . 2 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
3 simpl 109 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝜑)
4 simprrl 539 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑐𝑆)
5 simprlr 538 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑏𝑆)
6 seqcaopr.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
76caovcomg 6152 . . . . . . 7 ((𝜑 ∧ (𝑐𝑆𝑏𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
83, 4, 5, 7syl12anc 1269 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
98oveq1d 6009 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑))
10 simprrr 540 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑑𝑆)
11 seqcaopr.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211caovassg 6155 . . . . . 6 ((𝜑 ∧ (𝑐𝑆𝑏𝑆𝑑𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
133, 4, 5, 10, 12syl13anc 1273 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
1411caovassg 6155 . . . . . 6 ((𝜑 ∧ (𝑏𝑆𝑐𝑆𝑑𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
153, 5, 4, 10, 14syl13anc 1273 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
169, 13, 153eqtr3d 2270 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑)))
1716oveq2d 6010 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
18 simprll 537 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑎𝑆)
191caovclg 6149 . . . . 5 ((𝜑 ∧ (𝑏𝑆𝑑𝑆)) → (𝑏 + 𝑑) ∈ 𝑆)
203, 5, 10, 19syl12anc 1269 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑏 + 𝑑) ∈ 𝑆)
2111caovassg 6155 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑐𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
223, 18, 4, 20, 21syl13anc 1273 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
231caovclg 6149 . . . . 5 ((𝜑 ∧ (𝑐𝑆𝑑𝑆)) → (𝑐 + 𝑑) ∈ 𝑆)
2423adantrl 478 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑑) ∈ 𝑆)
2511caovassg 6155 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
263, 18, 5, 24, 25syl13anc 1273 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
2717, 22, 263eqtr4d 2272 . 2 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑)))
28 seqcaopr.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
29 seqcaopr.5 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
30 seqcaopr.6 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
31 seqcaopr.7 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
32 seqcaoprg.p . 2 (𝜑+𝑉)
33 seqcaoprg.f . 2 (𝜑𝐹𝑊)
34 seqcaoprg.g . 2 (𝜑𝐺𝑋)
35 seqcaoprg.h . 2 (𝜑𝐻𝑌)
362, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35seqcaopr2g 10703 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  cuz 9710  ...cfz 10192  seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657
This theorem is referenced by:  gsumfzmptfidmadd  13862
  Copyright terms: Public domain W3C validator