ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqcaoprg GIF version

Theorem seqcaoprg 10573
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqcaopr.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqcaopr.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr.7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
seqcaoprg.p (𝜑+𝑉)
seqcaoprg.f (𝜑𝐹𝑊)
seqcaoprg.g (𝜑𝐺𝑋)
seqcaoprg.h (𝜑𝐻𝑌)
Assertion
Ref Expression
seqcaoprg (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑥,𝑘,𝑦,𝑧,𝜑   𝑘,𝑀   + ,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑘,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑘)   𝑌(𝑥,𝑦,𝑧,𝑘)

Proof of Theorem seqcaoprg
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21caovclg 6076 . 2 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
3 simpl 109 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝜑)
4 simprrl 539 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑐𝑆)
5 simprlr 538 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑏𝑆)
6 seqcaopr.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
76caovcomg 6079 . . . . . . 7 ((𝜑 ∧ (𝑐𝑆𝑏𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
83, 4, 5, 7syl12anc 1247 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
98oveq1d 5937 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑))
10 simprrr 540 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑑𝑆)
11 seqcaopr.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211caovassg 6082 . . . . . 6 ((𝜑 ∧ (𝑐𝑆𝑏𝑆𝑑𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
133, 4, 5, 10, 12syl13anc 1251 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
1411caovassg 6082 . . . . . 6 ((𝜑 ∧ (𝑏𝑆𝑐𝑆𝑑𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
153, 5, 4, 10, 14syl13anc 1251 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
169, 13, 153eqtr3d 2237 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑)))
1716oveq2d 5938 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
18 simprll 537 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑎𝑆)
191caovclg 6076 . . . . 5 ((𝜑 ∧ (𝑏𝑆𝑑𝑆)) → (𝑏 + 𝑑) ∈ 𝑆)
203, 5, 10, 19syl12anc 1247 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑏 + 𝑑) ∈ 𝑆)
2111caovassg 6082 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑐𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
223, 18, 4, 20, 21syl13anc 1251 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
231caovclg 6076 . . . . 5 ((𝜑 ∧ (𝑐𝑆𝑑𝑆)) → (𝑐 + 𝑑) ∈ 𝑆)
2423adantrl 478 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑑) ∈ 𝑆)
2511caovassg 6082 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
263, 18, 5, 24, 25syl13anc 1251 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
2717, 22, 263eqtr4d 2239 . 2 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑)))
28 seqcaopr.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
29 seqcaopr.5 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
30 seqcaopr.6 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
31 seqcaopr.7 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
32 seqcaoprg.p . 2 (𝜑+𝑉)
33 seqcaoprg.f . 2 (𝜑𝐹𝑊)
34 seqcaoprg.g . 2 (𝜑𝐺𝑋)
35 seqcaoprg.h . 2 (𝜑𝐻𝑌)
362, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35seqcaopr2g 10571 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  cuz 9598  ...cfz 10080  seqcseq 10524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-fzo 10215  df-seqfrec 10525
This theorem is referenced by:  gsumfzmptfidmadd  13445
  Copyright terms: Public domain W3C validator