ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem3 Unicode version

Theorem pythagtriplem3 12776
Description: Lemma for pythagtrip 12792. Show that  C and 
B are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( B  gcd  C )  =  1 )

Proof of Theorem pythagtriplem3
StepHypRef Expression
1 oveq2 6002 . . . . . . 7  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( B ^ 2 )  gcd  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  =  ( ( B ^ 2 )  gcd  ( C ^ 2 ) ) )
21adantl 277 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B ^ 2 )  gcd  ( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  ( ( B ^ 2 )  gcd  ( C ^ 2 ) ) )
3 nnz 9453 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  ZZ )
4 zsqcl 10819 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
53, 4syl 14 . . . . . . . . . 10  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  ZZ )
653ad2ant2 1043 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  ZZ )
7 nnz 9453 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  ZZ )
8 zsqcl 10819 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  ZZ )
1093ad2ant1 1042 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
11 gcdadd 12492 . . . . . . . . 9  |-  ( ( ( B ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ )  -> 
( ( B ^
2 )  gcd  ( A ^ 2 ) )  =  ( ( B ^ 2 )  gcd  ( ( A ^
2 )  +  ( B ^ 2 ) ) ) )
126, 10, 11syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B ^ 2 )  gcd  ( A ^ 2 ) )  =  ( ( B ^ 2 )  gcd  ( ( A ^
2 )  +  ( B ^ 2 ) ) ) )
136, 10gcdcomd 12481 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B ^ 2 )  gcd  ( A ^ 2 ) )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
1412, 13eqtr3d 2264 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B ^ 2 )  gcd  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
1514adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B ^ 2 )  gcd  ( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
162, 15eqtr3d 2264 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B ^ 2 )  gcd  ( C ^ 2 ) )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
17 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  B  e.  NN )
18 simpl3 1026 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  C  e.  NN )
19 sqgcd 12536 . . . . . 6  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( B  gcd  C ) ^ 2 )  =  ( ( B ^ 2 )  gcd  ( C ^ 2 ) ) )
2017, 18, 19syl2anc 411 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B  gcd  C ) ^
2 )  =  ( ( B ^ 2 )  gcd  ( C ^ 2 ) ) )
21 simpl1 1024 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  A  e.  NN )
22 sqgcd 12536 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B ) ^ 2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
2321, 17, 22syl2anc 411 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  =  ( ( A ^ 2 )  gcd  ( B ^ 2 ) ) )
2416, 20, 233eqtr4d 2272 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B  gcd  C ) ^
2 )  =  ( ( A  gcd  B
) ^ 2 ) )
25243adant3 1041 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( B  gcd  C
) ^ 2 )  =  ( ( A  gcd  B ) ^
2 ) )
26 simp3l 1049 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( A  gcd  B )  =  1 )
2726oveq1d 6009 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( A  gcd  B
) ^ 2 )  =  ( 1 ^ 2 ) )
2825, 27eqtrd 2262 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( B  gcd  C
) ^ 2 )  =  ( 1 ^ 2 ) )
2933ad2ant2 1043 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
30 nnz 9453 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  ZZ )
31303ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
3229, 31gcdcld 12475 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  gcd  C )  e. 
NN0 )
3332nn0red 9411 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  gcd  C )  e.  RR )
34333ad2ant1 1042 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( B  gcd  C )  e.  RR )
3532nn0ge0d 9413 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( B  gcd  C
) )
36353ad2ant1 1042 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( B  gcd  C
) )
37 1re 8133 . . . 4  |-  1  e.  RR
38 0le1 8616 . . . 4  |-  0  <_  1
39 sq11 10821 . . . 4  |-  ( ( ( ( B  gcd  C )  e.  RR  /\  0  <_  ( B  gcd  C ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( B  gcd  C ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( B  gcd  C )  =  1 ) )
4037, 38, 39mpanr12 439 . . 3  |-  ( ( ( B  gcd  C
)  e.  RR  /\  0  <_  ( B  gcd  C ) )  ->  (
( ( B  gcd  C ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( B  gcd  C )  =  1 ) )
4134, 36, 40syl2anc 411 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( B  gcd  C ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( B  gcd  C )  =  1 ) )
4228, 41mpbid 147 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( B  gcd  C )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 5994   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    <_ cle 8170   NNcn 9098   2c2 9149   ZZcz 9434   ^cexp 10747    || cdvds 12284    gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461
This theorem is referenced by:  pythagtriplem4  12777
  Copyright terms: Public domain W3C validator