![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subid1d | GIF version |
Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
subid1d | ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | subid1 8194 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2159 (class class class)co 5890 ℂcc 7826 0cc0 7828 − cmin 8145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-setind 4550 ax-resscn 7920 ax-1cn 7921 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-addcom 7928 ax-addass 7930 ax-distr 7932 ax-i2m1 7933 ax-0id 7936 ax-rnegex 7937 ax-cnre 7939 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-iota 5192 df-fun 5232 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-sub 8147 |
This theorem is referenced by: suble0 8450 lesub0 8453 ltm1 8820 modqid 10366 modqeqmodmin 10411 bcn0 10752 bcnn 10754 hashfzo0 10820 hashfz0 10822 remul2 10899 max0addsup 11245 clim0c 11311 geolim 11536 addmodlteqALT 11882 dvdsmod 11885 ndvdssub 11952 nn0seqcvgd 12058 phiprmpw 12239 pczpre 12314 pcaddlem 12355 pcmpt2 12359 4sqlem9 12401 limcimolemlt 14516 dveflem 14570 sinmpi 14619 cosppi 14622 sinhalfpim 14625 sincosq2sgn 14631 apdifflemr 15179 |
Copyright terms: Public domain | W3C validator |