| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subid1d | GIF version | ||
| Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subid1d | ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | subid1 8374 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 − cmin 8325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 |
| This theorem is referenced by: suble0 8631 lesub0 8634 ltm1 9001 modqid 10579 modqeqmodmin 10624 bcn0 10985 bcnn 10987 hashfzo0 11053 hashfz0 11055 ccatlid 11149 pfxmpt 11220 pfxfv 11224 swrdpfx 11247 pfxpfx 11248 remul2 11392 max0addsup 11738 clim0c 11805 geolim 12030 addmodlteqALT 12378 dvdsmod 12381 ndvdssub 12449 nn0seqcvgd 12571 phiprmpw 12752 pczpre 12828 pcaddlem 12870 pcmpt2 12875 4sqlem9 12917 4sqlem11 12932 zndvds0 14622 limcimolemlt 15346 dveflem 15408 sinmpi 15497 cosppi 15500 sinhalfpim 15503 sincosq2sgn 15509 0sgmppw 15675 apdifflemr 16445 |
| Copyright terms: Public domain | W3C validator |