ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subid1d GIF version

Theorem subid1d 8085
Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
subid1d (𝜑 → (𝐴 − 0) = 𝐴)

Proof of Theorem subid1d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 subid1 8005 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
31, 2syl 14 1 (𝜑 → (𝐴 − 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  (class class class)co 5781  cc 7641  0cc0 7643  cmin 7956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-setind 4459  ax-resscn 7735  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-sub 7958
This theorem is referenced by:  suble0  8261  lesub0  8264  ltm1  8627  modqid  10152  modqeqmodmin  10197  bcn0  10532  bcnn  10534  hashfzo0  10600  hashfz0  10602  remul2  10676  max0addsup  11022  clim0c  11086  geolim  11311  addmodlteqALT  11591  dvdsmod  11594  ndvdssub  11661  nn0seqcvgd  11756  phiprmpw  11932  limcimolemlt  12839  dveflem  12893  sinmpi  12942  cosppi  12945  sinhalfpim  12948  sincosq2sgn  12954  apdifflemr  13413
  Copyright terms: Public domain W3C validator