ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd GIF version

Theorem subrngpropd 14188
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrngpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrngpropd (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrngpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . . . 5 ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng)
21a1i 9 . . . 4 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng))
3 simp1 1021 . . . . 5 ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐿 ∈ Rng)
4 subrngpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
5 subrngpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
6 subrngpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrngpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7rngpropd 13926 . . . . 5 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
93, 8imbitrrid 156 . . . 4 (𝜑 → ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐾 ∈ Rng))
108adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
114ineq2d 3405 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2230 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2230 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐾) = (Base‘𝐾))
15 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐾 ∈ Rng)
16 vex 2802 . . . . . . . . . 10 𝑠 ∈ V
1716a1i 9 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝑠 ∈ V)
1813, 14, 15, 17ressbasd 13108 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2262 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3405 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2230 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2230 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐿 ∈ Rng)
2522, 23, 24, 17ressbasd 13108 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2621, 25eqtrd 2262 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
27 elinel2 3391 . . . . . . . . 9 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
28 elinel2 3391 . . . . . . . . 9 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2927, 28anim12i 338 . . . . . . . 8 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
306adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
31 eqidd 2230 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g𝐾))
3213, 31, 17, 15ressplusgd 13170 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3332oveqdr 6035 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
34 eqidd 2230 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g𝐿))
3522, 34, 17, 24ressplusgd 13170 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3635oveqdr 6035 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3730, 33, 363eqtr3d 2270 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3829, 37sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
397adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
40 eqid 2229 . . . . . . . . . . . 12 (𝐾s 𝑠) = (𝐾s 𝑠)
41 eqid 2229 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
4240, 41ressmulrg 13186 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4317, 15, 42syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4443oveqdr 6035 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
45 eqid 2229 . . . . . . . . . . . 12 (𝐿s 𝑠) = (𝐿s 𝑠)
46 eqid 2229 . . . . . . . . . . . 12 (.r𝐿) = (.r𝐿)
4745, 46ressmulrg 13186 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐿 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4817, 24, 47syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4948oveqdr 6035 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5039, 44, 493eqtr3d 2270 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5129, 50sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5219, 26, 38, 51rngpropd 13926 . . . . . 6 ((𝜑𝐾 ∈ Rng) → ((𝐾s 𝑠) ∈ Rng ↔ (𝐿s 𝑠) ∈ Rng))
534, 5eqtr3d 2264 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
5453sseq2d 3254 . . . . . . 7 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5554adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5610, 52, 553anbi123d 1346 . . . . 5 ((𝜑𝐾 ∈ Rng) → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
5756ex 115 . . . 4 (𝜑 → (𝐾 ∈ Rng → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))))
582, 9, 57pm5.21ndd 710 . . 3 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
59 eqid 2229 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6059issubrng 14171 . . 3 (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)))
61 eqid 2229 . . . 4 (Base‘𝐿) = (Base‘𝐿)
6261issubrng 14171 . . 3 (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))
6358, 60, 623bitr4g 223 . 2 (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿)))
6463eqrdv 2227 1 (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  +gcplusg 13118  .rcmulr 13119  Rngcrng 13903  SubRngcsubrng 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-subrng 14170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator