Step | Hyp | Ref
| Expression |
1 | | simp1 999 |
. . . . 5
⊢ ((𝐾 ∈ Rng ∧ (𝐾 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng) |
2 | 1 | a1i 9 |
. . . 4
⊢ (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng)) |
3 | | simp1 999 |
. . . . 5
⊢ ((𝐿 ∈ Rng ∧ (𝐿 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐿 ∈ Rng) |
4 | | subrngpropd.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
5 | | subrngpropd.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
6 | | subrngpropd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | | subrngpropd.4 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
8 | 4, 5, 6, 7 | rngpropd 13306 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng)) |
9 | 3, 8 | imbitrrid 156 |
. . . 4
⊢ (𝜑 → ((𝐿 ∈ Rng ∧ (𝐿 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐾 ∈ Rng)) |
10 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng)) |
11 | 4 | ineq2d 3351 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐾))) |
12 | 11 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐾))) |
13 | | eqidd 2190 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝐾 ↾s 𝑠) = (𝐾 ↾s 𝑠)) |
14 | | eqidd 2190 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (Base‘𝐾) = (Base‘𝐾)) |
15 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → 𝐾 ∈ Rng) |
16 | | vex 2755 |
. . . . . . . . . 10
⊢ 𝑠 ∈ V |
17 | 16 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → 𝑠 ∈ V) |
18 | 13, 14, 15, 17 | ressbasd 12576 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠))) |
19 | 12, 18 | eqtrd 2222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ∩ 𝐵) = (Base‘(𝐾 ↾s 𝑠))) |
20 | 5 | ineq2d 3351 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐿))) |
21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐿))) |
22 | | eqidd 2190 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝐿 ↾s 𝑠) = (𝐿 ↾s 𝑠)) |
23 | | eqidd 2190 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (Base‘𝐿) = (Base‘𝐿)) |
24 | 8 | biimpa 296 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → 𝐿 ∈ Rng) |
25 | 22, 23, 24, 17 | ressbasd 12576 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠))) |
26 | 21, 25 | eqtrd 2222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ∩ 𝐵) = (Base‘(𝐿 ↾s 𝑠))) |
27 | | elinel2 3337 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑠 ∩ 𝐵) → 𝑥 ∈ 𝐵) |
28 | | elinel2 3337 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑠 ∩ 𝐵) → 𝑦 ∈ 𝐵) |
29 | 27, 28 | anim12i 338 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
30 | 6 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
31 | | eqidd 2190 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) →
(+g‘𝐾) =
(+g‘𝐾)) |
32 | 13, 31, 17, 15 | ressplusgd 12637 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) →
(+g‘𝐾) =
(+g‘(𝐾
↾s 𝑠))) |
33 | 32 | oveqdr 5923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦)) |
34 | | eqidd 2190 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) →
(+g‘𝐿) =
(+g‘𝐿)) |
35 | 22, 34, 17, 24 | ressplusgd 12637 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) →
(+g‘𝐿) =
(+g‘(𝐿
↾s 𝑠))) |
36 | 35 | oveqdr 5923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
37 | 30, 33, 36 | 3eqtr3d 2230 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
38 | 29, 37 | sylan2 286 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
39 | 7 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
40 | | eqid 2189 |
. . . . . . . . . . . 12
⊢ (𝐾 ↾s 𝑠) = (𝐾 ↾s 𝑠) |
41 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(.r‘𝐾) = (.r‘𝐾) |
42 | 40, 41 | ressmulrg 12653 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ V ∧ 𝐾 ∈ Rng) →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
43 | 17, 15, 42 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
44 | 43 | oveqdr 5923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦)) |
45 | | eqid 2189 |
. . . . . . . . . . . 12
⊢ (𝐿 ↾s 𝑠) = (𝐿 ↾s 𝑠) |
46 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(.r‘𝐿) = (.r‘𝐿) |
47 | 45, 46 | ressmulrg 12653 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ V ∧ 𝐿 ∈ Rng) →
(.r‘𝐿) =
(.r‘(𝐿
↾s 𝑠))) |
48 | 17, 24, 47 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) →
(.r‘𝐿) =
(.r‘(𝐿
↾s 𝑠))) |
49 | 48 | oveqdr 5923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
50 | 39, 44, 49 | 3eqtr3d 2230 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
51 | 29, 50 | sylan2 286 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
52 | 19, 26, 38, 51 | rngpropd 13306 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → ((𝐾 ↾s 𝑠) ∈ Rng ↔ (𝐿 ↾s 𝑠) ∈ Rng)) |
53 | 4, 5 | eqtr3d 2224 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
54 | 53 | sseq2d 3200 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿))) |
55 | 54 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿))) |
56 | 10, 52, 55 | 3anbi123d 1323 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ Rng) → ((𝐾 ∈ Rng ∧ (𝐾 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))) |
57 | 56 | ex 115 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Rng → ((𝐾 ∈ Rng ∧ (𝐾 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))) |
58 | 2, 9, 57 | pm5.21ndd 706 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))) |
59 | | eqid 2189 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
60 | 59 | issubrng 13543 |
. . 3
⊢ (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾))) |
61 | | eqid 2189 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
62 | 61 | issubrng 13543 |
. . 3
⊢ (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿 ↾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))) |
63 | 58, 60, 62 | 3bitr4g 223 |
. 2
⊢ (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿))) |
64 | 63 | eqrdv 2187 |
1
⊢ (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿)) |