ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd GIF version

Theorem subrngpropd 13772
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrngpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrngpropd (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrngpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . 5 ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng)
21a1i 9 . . . 4 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng))
3 simp1 999 . . . . 5 ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐿 ∈ Rng)
4 subrngpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
5 subrngpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
6 subrngpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrngpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7rngpropd 13511 . . . . 5 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
93, 8imbitrrid 156 . . . 4 (𝜑 → ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐾 ∈ Rng))
108adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
114ineq2d 3364 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2197 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2197 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐾) = (Base‘𝐾))
15 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐾 ∈ Rng)
16 vex 2766 . . . . . . . . . 10 𝑠 ∈ V
1716a1i 9 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝑠 ∈ V)
1813, 14, 15, 17ressbasd 12745 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2229 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3364 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2197 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2197 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐿 ∈ Rng)
2522, 23, 24, 17ressbasd 12745 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2621, 25eqtrd 2229 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
27 elinel2 3350 . . . . . . . . 9 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
28 elinel2 3350 . . . . . . . . 9 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2927, 28anim12i 338 . . . . . . . 8 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
306adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
31 eqidd 2197 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g𝐾))
3213, 31, 17, 15ressplusgd 12806 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3332oveqdr 5950 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
34 eqidd 2197 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g𝐿))
3522, 34, 17, 24ressplusgd 12806 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3635oveqdr 5950 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3730, 33, 363eqtr3d 2237 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3829, 37sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
397adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
40 eqid 2196 . . . . . . . . . . . 12 (𝐾s 𝑠) = (𝐾s 𝑠)
41 eqid 2196 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
4240, 41ressmulrg 12822 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4317, 15, 42syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4443oveqdr 5950 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
45 eqid 2196 . . . . . . . . . . . 12 (𝐿s 𝑠) = (𝐿s 𝑠)
46 eqid 2196 . . . . . . . . . . . 12 (.r𝐿) = (.r𝐿)
4745, 46ressmulrg 12822 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐿 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4817, 24, 47syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4948oveqdr 5950 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5039, 44, 493eqtr3d 2237 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5129, 50sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5219, 26, 38, 51rngpropd 13511 . . . . . 6 ((𝜑𝐾 ∈ Rng) → ((𝐾s 𝑠) ∈ Rng ↔ (𝐿s 𝑠) ∈ Rng))
534, 5eqtr3d 2231 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
5453sseq2d 3213 . . . . . . 7 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5554adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5610, 52, 553anbi123d 1323 . . . . 5 ((𝜑𝐾 ∈ Rng) → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
5756ex 115 . . . 4 (𝜑 → (𝐾 ∈ Rng → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))))
582, 9, 57pm5.21ndd 706 . . 3 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
59 eqid 2196 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6059issubrng 13755 . . 3 (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)))
61 eqid 2196 . . . 4 (Base‘𝐿) = (Base‘𝐿)
6261issubrng 13755 . . 3 (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))
6358, 60, 623bitr4g 223 . 2 (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿)))
6463eqrdv 2194 1 (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  +gcplusg 12755  .rcmulr 12756  Rngcrng 13488  SubRngcsubrng 13753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-subrng 13754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator