ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd GIF version

Theorem subrngpropd 14022
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrngpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrngpropd (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrngpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . 5 ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng)
21a1i 9 . . . 4 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng))
3 simp1 1000 . . . . 5 ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐿 ∈ Rng)
4 subrngpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
5 subrngpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
6 subrngpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrngpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7rngpropd 13761 . . . . 5 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
93, 8imbitrrid 156 . . . 4 (𝜑 → ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐾 ∈ Rng))
108adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
114ineq2d 3375 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2207 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2207 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐾) = (Base‘𝐾))
15 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐾 ∈ Rng)
16 vex 2776 . . . . . . . . . 10 𝑠 ∈ V
1716a1i 9 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝑠 ∈ V)
1813, 14, 15, 17ressbasd 12943 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2239 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3375 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2207 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2207 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐿 ∈ Rng)
2522, 23, 24, 17ressbasd 12943 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2621, 25eqtrd 2239 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
27 elinel2 3361 . . . . . . . . 9 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
28 elinel2 3361 . . . . . . . . 9 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2927, 28anim12i 338 . . . . . . . 8 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
306adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
31 eqidd 2207 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g𝐾))
3213, 31, 17, 15ressplusgd 13005 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3332oveqdr 5979 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
34 eqidd 2207 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g𝐿))
3522, 34, 17, 24ressplusgd 13005 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3635oveqdr 5979 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3730, 33, 363eqtr3d 2247 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3829, 37sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
397adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
40 eqid 2206 . . . . . . . . . . . 12 (𝐾s 𝑠) = (𝐾s 𝑠)
41 eqid 2206 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
4240, 41ressmulrg 13021 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4317, 15, 42syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4443oveqdr 5979 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
45 eqid 2206 . . . . . . . . . . . 12 (𝐿s 𝑠) = (𝐿s 𝑠)
46 eqid 2206 . . . . . . . . . . . 12 (.r𝐿) = (.r𝐿)
4745, 46ressmulrg 13021 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐿 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4817, 24, 47syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4948oveqdr 5979 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5039, 44, 493eqtr3d 2247 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5129, 50sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5219, 26, 38, 51rngpropd 13761 . . . . . 6 ((𝜑𝐾 ∈ Rng) → ((𝐾s 𝑠) ∈ Rng ↔ (𝐿s 𝑠) ∈ Rng))
534, 5eqtr3d 2241 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
5453sseq2d 3224 . . . . . . 7 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5554adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5610, 52, 553anbi123d 1325 . . . . 5 ((𝜑𝐾 ∈ Rng) → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
5756ex 115 . . . 4 (𝜑 → (𝐾 ∈ Rng → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))))
582, 9, 57pm5.21ndd 707 . . 3 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
59 eqid 2206 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6059issubrng 14005 . . 3 (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)))
61 eqid 2206 . . . 4 (Base‘𝐿) = (Base‘𝐿)
6261issubrng 14005 . . 3 (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))
6358, 60, 623bitr4g 223 . 2 (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿)))
6463eqrdv 2204 1 (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  cin 3166  wss 3167  cfv 5276  (class class class)co 5951  Basecbs 12876  s cress 12877  +gcplusg 12953  .rcmulr 12954  Rngcrng 13738  SubRngcsubrng 14003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-cmn 13666  df-abl 13667  df-mgp 13727  df-rng 13739  df-subrng 14004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator