ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd GIF version

Theorem subrngpropd 14145
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrngpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrngpropd (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrngpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1002 . . . . 5 ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng)
21a1i 9 . . . 4 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) → 𝐾 ∈ Rng))
3 simp1 1002 . . . . 5 ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐿 ∈ Rng)
4 subrngpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
5 subrngpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
6 subrngpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 subrngpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
84, 5, 6, 7rngpropd 13884 . . . . 5 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
93, 8imbitrrid 156 . . . 4 (𝜑 → ((𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)) → 𝐾 ∈ Rng))
108adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
114ineq2d 3385 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
1211adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
13 eqidd 2210 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐾s 𝑠) = (𝐾s 𝑠))
14 eqidd 2210 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐾) = (Base‘𝐾))
15 simpr 110 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐾 ∈ Rng)
16 vex 2782 . . . . . . . . . 10 𝑠 ∈ V
1716a1i 9 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝑠 ∈ V)
1813, 14, 15, 17ressbasd 13066 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
1912, 18eqtrd 2242 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
205ineq2d 3385 . . . . . . . . 9 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
2120adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
22 eqidd 2210 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (𝐿s 𝑠) = (𝐿s 𝑠))
23 eqidd 2210 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → (Base‘𝐿) = (Base‘𝐿))
248biimpa 296 . . . . . . . . 9 ((𝜑𝐾 ∈ Rng) → 𝐿 ∈ Rng)
2522, 23, 24, 17ressbasd 13066 . . . . . . . 8 ((𝜑𝐾 ∈ Rng) → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
2621, 25eqtrd 2242 . . . . . . 7 ((𝜑𝐾 ∈ Rng) → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
27 elinel2 3371 . . . . . . . . 9 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
28 elinel2 3371 . . . . . . . . 9 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2927, 28anim12i 338 . . . . . . . 8 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
306adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
31 eqidd 2210 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g𝐾))
3213, 31, 17, 15ressplusgd 13128 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐾) = (+g‘(𝐾s 𝑠)))
3332oveqdr 6002 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦))
34 eqidd 2210 . . . . . . . . . . 11 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g𝐿))
3522, 34, 17, 24ressplusgd 13128 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (+g𝐿) = (+g‘(𝐿s 𝑠)))
3635oveqdr 6002 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3730, 33, 363eqtr3d 2250 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3829, 37sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
397adantlr 477 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
40 eqid 2209 . . . . . . . . . . . 12 (𝐾s 𝑠) = (𝐾s 𝑠)
41 eqid 2209 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
4240, 41ressmulrg 13144 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4317, 15, 42syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐾) = (.r‘(𝐾s 𝑠)))
4443oveqdr 6002 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦))
45 eqid 2209 . . . . . . . . . . . 12 (𝐿s 𝑠) = (𝐿s 𝑠)
46 eqid 2209 . . . . . . . . . . . 12 (.r𝐿) = (.r𝐿)
4745, 46ressmulrg 13144 . . . . . . . . . . 11 ((𝑠 ∈ V ∧ 𝐿 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4817, 24, 47syl2anc 411 . . . . . . . . . 10 ((𝜑𝐾 ∈ Rng) → (.r𝐿) = (.r‘(𝐿s 𝑠)))
4948oveqdr 6002 . . . . . . . . 9 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5039, 44, 493eqtr3d 2250 . . . . . . . 8 (((𝜑𝐾 ∈ Rng) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5129, 50sylan2 286 . . . . . . 7 (((𝜑𝐾 ∈ Rng) ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
5219, 26, 38, 51rngpropd 13884 . . . . . 6 ((𝜑𝐾 ∈ Rng) → ((𝐾s 𝑠) ∈ Rng ↔ (𝐿s 𝑠) ∈ Rng))
534, 5eqtr3d 2244 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
5453sseq2d 3234 . . . . . . 7 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5554adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Rng) → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
5610, 52, 553anbi123d 1327 . . . . 5 ((𝜑𝐾 ∈ Rng) → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
5756ex 115 . . . 4 (𝜑 → (𝐾 ∈ Rng → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))))
582, 9, 57pm5.21ndd 709 . . 3 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
59 eqid 2209 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6059issubrng 14128 . . 3 (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)))
61 eqid 2209 . . . 4 (Base‘𝐿) = (Base‘𝐿)
6261issubrng 14128 . . 3 (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))
6358, 60, 623bitr4g 223 . 2 (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿)))
6463eqrdv 2207 1 (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  Vcvv 2779  cin 3176  wss 3177  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  +gcplusg 13076  .rcmulr 13077  Rngcrng 13861  SubRngcsubrng 14126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-subrng 14127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator