Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6ib | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ib.1 | |
syl6ib.2 |
Ref | Expression |
---|---|
syl6ib |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ib.1 | . 2 | |
2 | syl6ib.2 | . . 3 | |
3 | 2 | biimpi 119 | . 2 |
4 | 1, 3 | syl6 33 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 exp4a 364 con2biddc 875 nfalt 1571 alexim 1638 19.36-1 1666 ax11ev 1821 equs5or 1823 necon2bd 2398 necon2d 2399 necon1bbiddc 2403 necon2abiddc 2406 necon2bbiddc 2407 necon4idc 2409 necon4ddc 2412 necon1bddc 2417 spc2gv 2821 spc3gv 2823 mo2icl 2909 reupick 3411 prneimg 3761 invdisj 3983 trin 4097 exmidsssnc 4189 ordsucss 4488 eqbrrdva 4781 elreldm 4837 elres 4927 xp11m 5049 ssrnres 5053 opelf 5369 dffo4 5644 dftpos3 6241 tfr1onlemaccex 6327 tfrcllemaccex 6340 nnaordex 6507 swoer 6541 map0g 6666 mapsn 6668 nneneq 6835 fnfi 6914 prarloclemlo 7456 genprndl 7483 genprndu 7484 cauappcvgprlemladdrl 7619 caucvgprlemladdrl 7640 caucvgsrlemoffres 7762 caucvgsr 7764 nntopi 7856 letr 8002 reapcotr 8517 apcotr 8526 mulext1 8531 lt2msq 8802 nneoor 9314 xrletr 9765 icoshft 9947 caucvgre 10945 absext 11027 rexico 11185 summodc 11346 gcdeq0 11932 intopsn 12621 tgcn 13002 cnptoprest 13033 metequiv2 13290 bj-nnsn 13768 bj-inf2vnlem2 14006 |
Copyright terms: Public domain | W3C validator |