Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6ib | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ib.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ib.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
syl6ib | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ib.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ib.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 880 nfalt 1576 alexim 1643 19.36-1 1671 ax11ev 1826 equs5or 1828 necon2bd 2403 necon2d 2404 necon1bbiddc 2408 necon2abiddc 2411 necon2bbiddc 2412 necon4idc 2414 necon4ddc 2417 necon1bddc 2422 spc2gv 2826 spc3gv 2828 mo2icl 2914 reupick 3417 prneimg 3770 invdisj 3992 trin 4106 exmidsssnc 4198 ordsucss 4497 eqbrrdva 4790 elreldm 4846 elres 4936 xp11m 5059 ssrnres 5063 opelf 5379 dffo4 5656 dftpos3 6253 tfr1onlemaccex 6339 tfrcllemaccex 6352 nnaordex 6519 swoer 6553 map0g 6678 mapsn 6680 nneneq 6847 fnfi 6926 prarloclemlo 7468 genprndl 7495 genprndu 7496 cauappcvgprlemladdrl 7631 caucvgprlemladdrl 7652 caucvgsrlemoffres 7774 caucvgsr 7776 nntopi 7868 letr 8014 reapcotr 8529 apcotr 8538 mulext1 8543 lt2msq 8814 nneoor 9326 xrletr 9777 icoshft 9959 caucvgre 10956 absext 11038 rexico 11196 summodc 11357 gcdeq0 11943 intopsn 12650 tgcn 13259 cnptoprest 13290 metequiv2 13547 bj-nnsn 14025 bj-inf2vnlem2 14263 |
Copyright terms: Public domain | W3C validator |