Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6ib | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ib.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ib.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
syl6ib | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ib.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ib.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 119 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 exp4a 364 con2biddc 870 nfalt 1566 alexim 1633 19.36-1 1661 ax11ev 1816 equs5or 1818 necon2bd 2394 necon2d 2395 necon1bbiddc 2399 necon2abiddc 2402 necon2bbiddc 2403 necon4idc 2405 necon4ddc 2408 necon1bddc 2413 spc2gv 2817 spc3gv 2819 mo2icl 2905 reupick 3406 prneimg 3754 invdisj 3976 trin 4090 exmidsssnc 4182 ordsucss 4481 eqbrrdva 4774 elreldm 4830 elres 4920 xp11m 5042 ssrnres 5046 opelf 5359 dffo4 5633 dftpos3 6230 tfr1onlemaccex 6316 tfrcllemaccex 6329 nnaordex 6495 swoer 6529 map0g 6654 mapsn 6656 nneneq 6823 fnfi 6902 prarloclemlo 7435 genprndl 7462 genprndu 7463 cauappcvgprlemladdrl 7598 caucvgprlemladdrl 7619 caucvgsrlemoffres 7741 caucvgsr 7743 nntopi 7835 letr 7981 reapcotr 8496 apcotr 8505 mulext1 8510 lt2msq 8781 nneoor 9293 xrletr 9744 icoshft 9926 caucvgre 10923 absext 11005 rexico 11163 summodc 11324 gcdeq0 11910 intopsn 12598 tgcn 12848 cnptoprest 12879 metequiv2 13136 bj-nnsn 13614 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |