![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6ib | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ib.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ib.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
syl6ib | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ib.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ib.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 119 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 exp4a 361 con2biddc 848 nfalt 1540 alexim 1607 19.36-1 1634 ax11ev 1782 equs5or 1784 necon2bd 2340 necon2d 2341 necon1bbiddc 2345 necon2abiddc 2348 necon2bbiddc 2349 necon4idc 2351 necon4ddc 2354 necon1bddc 2359 spc2gv 2747 spc3gv 2749 mo2icl 2832 reupick 3326 prneimg 3667 invdisj 3889 trin 3996 exmidsssnc 4086 ordsucss 4380 eqbrrdva 4669 elreldm 4725 elres 4813 xp11m 4935 ssrnres 4939 opelf 5252 dffo4 5522 dftpos3 6113 tfr1onlemaccex 6199 tfrcllemaccex 6212 nnaordex 6377 swoer 6411 map0g 6536 mapsn 6538 nneneq 6704 fnfi 6777 prarloclemlo 7250 genprndl 7277 genprndu 7278 cauappcvgprlemladdrl 7413 caucvgprlemladdrl 7434 caucvgsrlemoffres 7542 caucvgsr 7544 nntopi 7629 letr 7770 reapcotr 8278 apcotr 8287 mulext1 8292 cnstab 8324 lt2msq 8554 nneoor 9057 xrletr 9484 icoshft 9666 caucvgre 10645 absext 10727 rexico 10885 summodc 11044 gcdeq0 11513 tgcn 12219 cnptoprest 12250 metequiv2 12485 bj-nnsn 12638 bj-inf2vnlem2 12861 |
Copyright terms: Public domain | W3C validator |