ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrnloopv Unicode version

Theorem umgrnloopv 15871
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
umgrnloopv  |-  ( ( G  e. UMGraph  /\  M  e.  W )  ->  (
( E `  X
)  =  { M ,  N }  ->  M  =/=  N ) )

Proof of Theorem umgrnloopv
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( E `  X )  =  { M ,  N } )
2 simpll 527 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  G  e. UMGraph )
3 umgruhgr 15870 . . . . . . . 8  |-  ( G  e. UMGraph  ->  G  e. UHGraph )
4 umgrnloopv.e . . . . . . . . 9  |-  E  =  (iEdg `  G )
54uhgrfun 15834 . . . . . . . 8  |-  ( G  e. UHGraph  ->  Fun  E )
6 funrel 5308 . . . . . . . 8  |-  ( Fun 
E  ->  Rel  E )
73, 5, 63syl 17 . . . . . . 7  |-  ( G  e. UMGraph  ->  Rel  E )
87ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  Rel  E )
9 simplr 528 . . . . . . 7  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  W )
10 prid1g 3748 . . . . . . . . 9  |-  ( M  e.  W  ->  M  e.  { M ,  N } )
1110adantl 277 . . . . . . . 8  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  M  e.  { M ,  N } )
12 eleq2 2271 . . . . . . . . 9  |-  ( ( E `  X )  =  { M ,  N }  ->  ( M  e.  ( E `  X )  <->  M  e.  { M ,  N }
) )
1312adantr 276 . . . . . . . 8  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  ( M  e.  ( E `  X )  <->  M  e.  { M ,  N }
) )
1411, 13mpbird 167 . . . . . . 7  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  M  e.  ( E `  X
) )
151, 9, 14syl2anc 411 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  ( E `  X
) )
16 relelfvdm 5632 . . . . . 6  |-  ( ( Rel  E  /\  M  e.  ( E `  X
) )  ->  X  e.  dom  E )
178, 15, 16syl2anc 411 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  X  e.  dom  E )
18 eqid 2207 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
1918, 4umgredg2en 15866 . . . . 5  |-  ( ( G  e. UMGraph  /\  X  e. 
dom  E )  -> 
( E `  X
)  ~~  2o )
202, 17, 19syl2anc 411 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( E `  X )  ~~  2o )
211, 20eqbrtrrd 4084 . . 3  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  { M ,  N }  ~~  2o )
22 pr2cv 7333 . . . 4  |-  ( { M ,  N }  ~~  2o  ->  ( M  e.  _V  /\  N  e. 
_V ) )
23 pr2ne 7328 . . . 4  |-  ( ( M  e.  _V  /\  N  e.  _V )  ->  ( { M ,  N }  ~~  2o  <->  M  =/=  N ) )
2421, 22, 233syl 17 . . 3  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( { M ,  N }  ~~  2o  <->  M  =/=  N
) )
2521, 24mpbid 147 . 2  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  =/=  N )
2625ex 115 1  |-  ( ( G  e. UMGraph  /\  M  e.  W )  ->  (
( E `  X
)  =  { M ,  N }  ->  M  =/=  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   _Vcvv 2777   {cpr 3645   class class class wbr 4060   dom cdm 4694   Rel wrel 4699   Fun wfun 5285   ` cfv 5291   2oc2o 6521    ~~ cen 6850  Vtxcvtx 15772  iEdgciedg 15773  UHGraphcuhgr 15824  UMGraphcumgr 15849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-nul 4187  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-iinf 4655  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-nul 3470  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-tr 4160  df-id 4359  df-iord 4432  df-on 4434  df-suc 4437  df-iom 4658  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-ima 4707  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-f1 5296  df-fo 5297  df-f1o 5298  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-1o 6527  df-2o 6528  df-er 6645  df-en 6853  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-uhgrm 15826  df-upgren 15850  df-umgren 15851
This theorem is referenced by:  umgrnloop  15873  usgrnloopv  15956
  Copyright terms: Public domain W3C validator