ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrnloopv Unicode version

Theorem umgrnloopv 15914
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
umgrnloopv  |-  ( ( G  e. UMGraph  /\  M  e.  W )  ->  (
( E `  X
)  =  { M ,  N }  ->  M  =/=  N ) )

Proof of Theorem umgrnloopv
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( E `  X )  =  { M ,  N } )
2 simpll 527 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  G  e. UMGraph )
3 umgruhgr 15913 . . . . . . . 8  |-  ( G  e. UMGraph  ->  G  e. UHGraph )
4 umgrnloopv.e . . . . . . . . 9  |-  E  =  (iEdg `  G )
54uhgrfun 15877 . . . . . . . 8  |-  ( G  e. UHGraph  ->  Fun  E )
6 funrel 5335 . . . . . . . 8  |-  ( Fun 
E  ->  Rel  E )
73, 5, 63syl 17 . . . . . . 7  |-  ( G  e. UMGraph  ->  Rel  E )
87ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  Rel  E )
9 simplr 528 . . . . . . 7  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  W )
10 prid1g 3770 . . . . . . . . 9  |-  ( M  e.  W  ->  M  e.  { M ,  N } )
1110adantl 277 . . . . . . . 8  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  M  e.  { M ,  N } )
12 eleq2 2293 . . . . . . . . 9  |-  ( ( E `  X )  =  { M ,  N }  ->  ( M  e.  ( E `  X )  <->  M  e.  { M ,  N }
) )
1312adantr 276 . . . . . . . 8  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  ( M  e.  ( E `  X )  <->  M  e.  { M ,  N }
) )
1411, 13mpbird 167 . . . . . . 7  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  M  e.  ( E `  X
) )
151, 9, 14syl2anc 411 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  ( E `  X
) )
16 relelfvdm 5659 . . . . . 6  |-  ( ( Rel  E  /\  M  e.  ( E `  X
) )  ->  X  e.  dom  E )
178, 15, 16syl2anc 411 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  X  e.  dom  E )
18 eqid 2229 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
1918, 4umgredg2en 15909 . . . . 5  |-  ( ( G  e. UMGraph  /\  X  e. 
dom  E )  -> 
( E `  X
)  ~~  2o )
202, 17, 19syl2anc 411 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( E `  X )  ~~  2o )
211, 20eqbrtrrd 4107 . . 3  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  { M ,  N }  ~~  2o )
22 pr2cv 7370 . . . 4  |-  ( { M ,  N }  ~~  2o  ->  ( M  e.  _V  /\  N  e. 
_V ) )
23 pr2ne 7365 . . . 4  |-  ( ( M  e.  _V  /\  N  e.  _V )  ->  ( { M ,  N }  ~~  2o  <->  M  =/=  N ) )
2421, 22, 233syl 17 . . 3  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( { M ,  N }  ~~  2o  <->  M  =/=  N
) )
2521, 24mpbid 147 . 2  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  =/=  N )
2625ex 115 1  |-  ( ( G  e. UMGraph  /\  M  e.  W )  ->  (
( E `  X
)  =  { M ,  N }  ->  M  =/=  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799   {cpr 3667   class class class wbr 4083   dom cdm 4719   Rel wrel 4724   Fun wfun 5312   ` cfv 5318   2oc2o 6556    ~~ cen 6885  Vtxcvtx 15813  iEdgciedg 15814  UHGraphcuhgr 15867  UMGraphcumgr 15892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-uhgrm 15869  df-upgren 15893  df-umgren 15894
This theorem is referenced by:  umgrnloop  15916  usgrnloopv  15999
  Copyright terms: Public domain W3C validator