ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrnloopv GIF version

Theorem umgrnloopv 15871
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloopv ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))

Proof of Theorem umgrnloopv
StepHypRef Expression
1 simpr 110 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → (𝐸𝑋) = {𝑀, 𝑁})
2 simpll 527 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → 𝐺 ∈ UMGraph)
3 umgruhgr 15870 . . . . . . . 8 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
4 umgrnloopv.e . . . . . . . . 9 𝐸 = (iEdg‘𝐺)
54uhgrfun 15834 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun 𝐸)
6 funrel 5308 . . . . . . . 8 (Fun 𝐸 → Rel 𝐸)
73, 5, 63syl 17 . . . . . . 7 (𝐺 ∈ UMGraph → Rel 𝐸)
87ad2antrr 488 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → Rel 𝐸)
9 simplr 528 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → 𝑀𝑊)
10 prid1g 3748 . . . . . . . . 9 (𝑀𝑊𝑀 ∈ {𝑀, 𝑁})
1110adantl 277 . . . . . . . 8 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀 ∈ {𝑀, 𝑁})
12 eleq2 2271 . . . . . . . . 9 ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀 ∈ (𝐸𝑋) ↔ 𝑀 ∈ {𝑀, 𝑁}))
1312adantr 276 . . . . . . . 8 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝑀 ∈ (𝐸𝑋) ↔ 𝑀 ∈ {𝑀, 𝑁}))
1411, 13mpbird 167 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀 ∈ (𝐸𝑋))
151, 9, 14syl2anc 411 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → 𝑀 ∈ (𝐸𝑋))
16 relelfvdm 5632 . . . . . 6 ((Rel 𝐸𝑀 ∈ (𝐸𝑋)) → 𝑋 ∈ dom 𝐸)
178, 15, 16syl2anc 411 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → 𝑋 ∈ dom 𝐸)
18 eqid 2207 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1918, 4umgredg2en 15866 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ≈ 2o)
202, 17, 19syl2anc 411 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → (𝐸𝑋) ≈ 2o)
211, 20eqbrtrrd 4084 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → {𝑀, 𝑁} ≈ 2o)
22 pr2cv 7333 . . . 4 ({𝑀, 𝑁} ≈ 2o → (𝑀 ∈ V ∧ 𝑁 ∈ V))
23 pr2ne 7328 . . . 4 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ({𝑀, 𝑁} ≈ 2o𝑀𝑁))
2421, 22, 233syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → ({𝑀, 𝑁} ≈ 2o𝑀𝑁))
2521, 24mpbid 147 . 2 (((𝐺 ∈ UMGraph ∧ 𝑀𝑊) ∧ (𝐸𝑋) = {𝑀, 𝑁}) → 𝑀𝑁)
2625ex 115 1 ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wne 2378  Vcvv 2777  {cpr 3645   class class class wbr 4060  dom cdm 4694  Rel wrel 4699  Fun wfun 5285  cfv 5291  2oc2o 6521  cen 6850  Vtxcvtx 15772  iEdgciedg 15773  UHGraphcuhgr 15824  UMGraphcumgr 15849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-nul 4187  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-iinf 4655  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-nul 3470  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-tr 4160  df-id 4359  df-iord 4432  df-on 4434  df-suc 4437  df-iom 4658  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-ima 4707  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-f1 5296  df-fo 5297  df-f1o 5298  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-1o 6527  df-2o 6528  df-er 6645  df-en 6853  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-uhgrm 15826  df-upgren 15850  df-umgren 15851
This theorem is referenced by:  umgrnloop  15873  usgrnloopv  15956
  Copyright terms: Public domain W3C validator