| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrnloopv | GIF version | ||
| Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
| Ref | Expression |
|---|---|
| umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrnloopv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝐸‘𝑋) = {𝑀, 𝑁}) | |
| 2 | simpll 527 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → 𝐺 ∈ UMGraph) | |
| 3 | umgruhgr 15913 | . . . . . . . 8 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
| 4 | umgrnloopv.e | . . . . . . . . 9 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 5 | 4 | uhgrfun 15877 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 6 | funrel 5335 | . . . . . . . 8 ⊢ (Fun 𝐸 → Rel 𝐸) | |
| 7 | 3, 5, 6 | 3syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → Rel 𝐸) |
| 8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → Rel 𝐸) |
| 9 | simplr 528 | . . . . . . 7 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → 𝑀 ∈ 𝑊) | |
| 10 | prid1g 3770 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝑊 → 𝑀 ∈ {𝑀, 𝑁}) | |
| 11 | 10 | adantl 277 | . . . . . . . 8 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ∈ {𝑀, 𝑁}) |
| 12 | eleq2 2293 | . . . . . . . . 9 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ (𝐸‘𝑋) ↔ 𝑀 ∈ {𝑀, 𝑁})) | |
| 13 | 12 | adantr 276 | . . . . . . . 8 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝑀 ∈ (𝐸‘𝑋) ↔ 𝑀 ∈ {𝑀, 𝑁})) |
| 14 | 11, 13 | mpbird 167 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ∈ (𝐸‘𝑋)) |
| 15 | 1, 9, 14 | syl2anc 411 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → 𝑀 ∈ (𝐸‘𝑋)) |
| 16 | relelfvdm 5659 | . . . . . 6 ⊢ ((Rel 𝐸 ∧ 𝑀 ∈ (𝐸‘𝑋)) → 𝑋 ∈ dom 𝐸) | |
| 17 | 8, 15, 16 | syl2anc 411 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → 𝑋 ∈ dom 𝐸) |
| 18 | eqid 2229 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 19 | 18, 4 | umgredg2en 15909 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ≈ 2o) |
| 20 | 2, 17, 19 | syl2anc 411 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝐸‘𝑋) ≈ 2o) |
| 21 | 1, 20 | eqbrtrrd 4107 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → {𝑀, 𝑁} ≈ 2o) |
| 22 | pr2cv 7370 | . . . 4 ⊢ ({𝑀, 𝑁} ≈ 2o → (𝑀 ∈ V ∧ 𝑁 ∈ V)) | |
| 23 | pr2ne 7365 | . . . 4 ⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ({𝑀, 𝑁} ≈ 2o ↔ 𝑀 ≠ 𝑁)) | |
| 24 | 21, 22, 23 | 3syl 17 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → ({𝑀, 𝑁} ≈ 2o ↔ 𝑀 ≠ 𝑁)) |
| 25 | 21, 24 | mpbid 147 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁) |
| 26 | 25 | ex 115 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 {cpr 3667 class class class wbr 4083 dom cdm 4719 Rel wrel 4724 Fun wfun 5312 ‘cfv 5318 2oc2o 6556 ≈ cen 6885 Vtxcvtx 15813 iEdgciedg 15814 UHGraphcuhgr 15867 UMGraphcumgr 15892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-1o 6562 df-2o 6563 df-er 6680 df-en 6888 df-sub 8319 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-dec 9579 df-ndx 13035 df-slot 13036 df-base 13038 df-edgf 15806 df-vtx 15815 df-iedg 15816 df-uhgrm 15869 df-upgren 15893 df-umgren 15894 |
| This theorem is referenced by: umgrnloop 15916 usgrnloopv 15999 |
| Copyright terms: Public domain | W3C validator |