ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrnloopvv Unicode version

Theorem umgrnloopvv 15760
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
umgrnloopvv  |-  ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  ->  (
( E `  X
)  =  { M ,  N }  ->  M  =/=  N ) )

Proof of Theorem umgrnloopvv
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( E `  X )  =  { M ,  N } )
2 simpll 527 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  G  e. UMGraph )
3 umgruhgr 15759 . . . . . . . . 9  |-  ( G  e. UMGraph  ->  G  e. UHGraph )
4 umgrnloopv.e . . . . . . . . . 10  |-  E  =  (iEdg `  G )
54uhgrfun 15723 . . . . . . . . 9  |-  ( G  e. UHGraph  ->  Fun  E )
6 funrel 5294 . . . . . . . . 9  |-  ( Fun 
E  ->  Rel  E )
73, 5, 63syl 17 . . . . . . . 8  |-  ( G  e. UMGraph  ->  Rel  E )
87ad2antrr 488 . . . . . . 7  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  Rel  E )
9 simplr 528 . . . . . . . 8  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  W )
10 prid1g 3739 . . . . . . . . . 10  |-  ( M  e.  W  ->  M  e.  { M ,  N } )
1110adantl 277 . . . . . . . . 9  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  M  e.  { M ,  N } )
12 eleq2 2270 . . . . . . . . . 10  |-  ( ( E `  X )  =  { M ,  N }  ->  ( M  e.  ( E `  X )  <->  M  e.  { M ,  N }
) )
1312adantr 276 . . . . . . . . 9  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  ( M  e.  ( E `  X )  <->  M  e.  { M ,  N }
) )
1411, 13mpbird 167 . . . . . . . 8  |-  ( ( ( E `  X
)  =  { M ,  N }  /\  M  e.  W )  ->  M  e.  ( E `  X
) )
151, 9, 14syl2anc 411 . . . . . . 7  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  ( E `  X
) )
16 relelfvdm 5618 . . . . . . 7  |-  ( ( Rel  E  /\  M  e.  ( E `  X
) )  ->  X  e.  dom  E )
178, 15, 16syl2anc 411 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  X  e.  dom  E )
18 eqid 2206 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
1918, 4umgredg2en 15755 . . . . . 6  |-  ( ( G  e. UMGraph  /\  X  e. 
dom  E )  -> 
( E `  X
)  ~~  2o )
202, 17, 19syl2anc 411 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  ( E `  X )  ~~  2o )
211, 20eqbrtrrd 4072 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W )  /\  ( E `  X )  =  { M ,  N } )  ->  { M ,  N }  ~~  2o )
22213adantl3 1158 . . 3  |-  ( ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  /\  ( E `  X )  =  { M ,  N } )  ->  { M ,  N }  ~~  2o )
23 simpl2 1004 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  /\  ( E `  X )  =  { M ,  N } )  ->  M  e.  W )
24 simpl3 1005 . . . 4  |-  ( ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  /\  ( E `  X )  =  { M ,  N } )  ->  N  e.  V )
25 pr2ne 7312 . . . 4  |-  ( ( M  e.  W  /\  N  e.  V )  ->  ( { M ,  N }  ~~  2o  <->  M  =/=  N ) )
2623, 24, 25syl2anc 411 . . 3  |-  ( ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  /\  ( E `  X )  =  { M ,  N } )  ->  ( { M ,  N }  ~~  2o  <->  M  =/=  N
) )
2722, 26mpbid 147 . 2  |-  ( ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  /\  ( E `  X )  =  { M ,  N } )  ->  M  =/=  N )
2827ex 115 1  |-  ( ( G  e. UMGraph  /\  M  e.  W  /\  N  e.  V )  ->  (
( E `  X
)  =  { M ,  N }  ->  M  =/=  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   {cpr 3636   class class class wbr 4048   dom cdm 4680   Rel wrel 4685   Fun wfun 5271   ` cfv 5277   2oc2o 6506    ~~ cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UHGraphcuhgr 15713  UMGraphcumgr 15738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-uhgrm 15715  df-upgren 15739  df-umgren 15740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator