ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1unit Unicode version

Theorem 1unit 14065
Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
unit.1  |-  U  =  (Unit `  R )
unit.2  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
1unit  |-  ( R  e.  Ring  ->  .1.  e.  U )

Proof of Theorem 1unit
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 unit.2 . . . 4  |-  .1.  =  ( 1r `  R )
31, 2ringidcl 13978 . . 3  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
4 eqid 2229 . . . 4  |-  ( ||r `  R
)  =  ( ||r `  R
)
51, 4dvdsrid 14058 . . 3  |-  ( ( R  e.  Ring  /\  .1.  e.  ( Base `  R
) )  ->  .1.  ( ||r `
 R )  .1.  )
63, 5mpdan 421 . 2  |-  ( R  e.  Ring  ->  .1.  ( ||r `  R )  .1.  )
7 eqid 2229 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
87opprring 14037 . . 3  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
97, 1opprbasg 14033 . . . 4  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
103, 9eleqtrd 2308 . . 3  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  (oppr
`  R ) ) )
11 eqid 2229 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
12 eqid 2229 . . . 4  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
1311, 12dvdsrid 14058 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  .1.  e.  (
Base `  (oppr
`  R ) ) )  ->  .1.  ( ||r `  (oppr
`  R ) )  .1.  )
148, 10, 13syl2anc 411 . 2  |-  ( R  e.  Ring  ->  .1.  ( ||r `  (oppr
`  R ) )  .1.  )
15 unit.1 . . . 4  |-  U  =  (Unit `  R )
1615a1i 9 . . 3  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
172a1i 9 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 1r `  R ) )
18 eqidd 2230 . . 3  |-  ( R  e.  Ring  ->  ( ||r `  R
)  =  ( ||r `  R
) )
19 eqidd 2230 . . 3  |-  ( R  e.  Ring  ->  (oppr `  R
)  =  (oppr `  R
) )
20 eqidd 2230 . . 3  |-  ( R  e.  Ring  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
21 ringsrg 14005 . . 3  |-  ( R  e.  Ring  ->  R  e. SRing
)
2216, 17, 18, 19, 20, 21isunitd 14064 . 2  |-  ( R  e.  Ring  ->  (  .1. 
e.  U  <->  (  .1.  ( ||r `
 R )  .1. 
/\  .1.  ( ||r `  (oppr `  R
) )  .1.  )
) )
236, 14, 22mpbir2and 950 1  |-  ( R  e.  Ring  ->  .1.  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317   Basecbs 13027   1rcur 13917   Ringcrg 13954  opprcoppr 14025   ||rcdsr 14044  Unitcui 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048
This theorem is referenced by:  unitgrp  14074  unitgrpid  14076  unitsubm  14077  1rinv  14086  0unit  14087  dvr1  14096  subrgugrp  14198
  Copyright terms: Public domain W3C validator