| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgredg | GIF version | ||
| Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| upgredg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | edgvalg 15741 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
| 3 | 1, 2 | eqtrid 2251 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺)) |
| 4 | 3 | eleq2d 2276 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ran (iEdg‘𝐺))) |
| 5 | 4 | biimpa 296 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → 𝐶 ∈ ran (iEdg‘𝐺)) |
| 6 | upgredg.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | eqid 2206 | . . . . . . . 8 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 8 | 6, 7 | upgrfen 15778 | . . . . . . 7 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 9 | 8 | ffnd 5441 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
| 11 | fnfun 5385 | . . . . 5 ⊢ ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → Fun (iEdg‘𝐺)) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → Fun (iEdg‘𝐺)) |
| 13 | simpr 110 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → 𝐶 ∈ ran (iEdg‘𝐺)) | |
| 14 | elrnrexdm 5737 | . . . 4 ⊢ (Fun (iEdg‘𝐺) → (𝐶 ∈ ran (iEdg‘𝐺) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧))) | |
| 15 | 12, 13, 14 | sylc 62 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧)) |
| 16 | simpll 527 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐺 ∈ UPGraph) | |
| 17 | 16, 9 | syl 14 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
| 18 | simprl 529 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝑧 ∈ dom (iEdg‘𝐺)) | |
| 19 | 6, 7 | upgrex 15784 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑧 ∈ dom (iEdg‘𝐺)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}) |
| 20 | 16, 17, 18, 19 | syl3anc 1250 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}) |
| 21 | simprr 531 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐶 = ((iEdg‘𝐺)‘𝑧)) | |
| 22 | 21 | eqeq1d 2215 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (𝐶 = {𝑎, 𝑏} ↔ ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})) |
| 23 | 22 | 2rexbidv 2532 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})) |
| 24 | 20, 23 | mpbird 167 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| 25 | 15, 24 | rexlimddv 2629 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| 26 | 5, 25 | syldan 282 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {crab 2489 𝒫 cpw 3621 {cpr 3639 class class class wbr 4054 dom cdm 4688 ran crn 4689 Fun wfun 5279 Fn wfn 5280 ‘cfv 5285 1oc1o 6513 2oc2o 6514 ≈ cen 6843 Vtxcvtx 15696 iEdgciedg 15697 Edgcedg 15739 UPGraphcupgr 15772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-en 6846 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 df-ndx 12920 df-slot 12921 df-base 12923 df-edgf 15689 df-vtx 15698 df-iedg 15699 df-edg 15740 df-upgren 15774 |
| This theorem is referenced by: upgrpredgv 15820 upgredg2vtx 15822 upgredgpr 15823 |
| Copyright terms: Public domain | W3C validator |