ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgredg GIF version

Theorem upgredg 15936
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredg ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem upgredg
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgvalg 15854 . . . . 5 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
31, 2eqtrid 2274 . . . 4 (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺))
43eleq2d 2299 . . 3 (𝐺 ∈ UPGraph → (𝐶𝐸𝐶 ∈ ran (iEdg‘𝐺)))
54biimpa 296 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → 𝐶 ∈ ran (iEdg‘𝐺))
6 upgredg.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
7 eqid 2229 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7upgrfen 15891 . . . . . . 7 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
98ffnd 5473 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
109adantr 276 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
11 fnfun 5417 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → Fun (iEdg‘𝐺))
1210, 11syl 14 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → Fun (iEdg‘𝐺))
13 simpr 110 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → 𝐶 ∈ ran (iEdg‘𝐺))
14 elrnrexdm 5773 . . . 4 (Fun (iEdg‘𝐺) → (𝐶 ∈ ran (iEdg‘𝐺) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧)))
1512, 13, 14sylc 62 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧))
16 simpll 527 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐺 ∈ UPGraph)
1716, 9syl 14 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
18 simprl 529 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝑧 ∈ dom (iEdg‘𝐺))
196, 7upgrex 15897 . . . . 5 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑧 ∈ dom (iEdg‘𝐺)) → ∃𝑎𝑉𝑏𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})
2016, 17, 18, 19syl3anc 1271 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎𝑉𝑏𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})
21 simprr 531 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐶 = ((iEdg‘𝐺)‘𝑧))
2221eqeq1d 2238 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (𝐶 = {𝑎, 𝑏} ↔ ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}))
23222rexbidv 2555 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}))
2420, 23mpbird 167 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
2515, 24rexlimddv 2653 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
265, 25syldan 282 1 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wrex 2509  {crab 2512  𝒫 cpw 3649  {cpr 3667   class class class wbr 4082  dom cdm 4718  ran crn 4719  Fun wfun 5311   Fn wfn 5312  cfv 5317  1oc1o 6553  2oc2o 6554  cen 6883  Vtxcvtx 15807  iEdgciedg 15808  Edgcedg 15852  UPGraphcupgr 15885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-en 6886  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-edg 15853  df-upgren 15887
This theorem is referenced by:  upgrpredgv  15938  upgredg2vtx  15940  upgredgpr  15941
  Copyright terms: Public domain W3C validator