ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgredg GIF version

Theorem upgredg 15818
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredg ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem upgredg
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgvalg 15741 . . . . 5 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
31, 2eqtrid 2251 . . . 4 (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺))
43eleq2d 2276 . . 3 (𝐺 ∈ UPGraph → (𝐶𝐸𝐶 ∈ ran (iEdg‘𝐺)))
54biimpa 296 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → 𝐶 ∈ ran (iEdg‘𝐺))
6 upgredg.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
7 eqid 2206 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7upgrfen 15778 . . . . . . 7 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
98ffnd 5441 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
109adantr 276 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
11 fnfun 5385 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → Fun (iEdg‘𝐺))
1210, 11syl 14 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → Fun (iEdg‘𝐺))
13 simpr 110 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → 𝐶 ∈ ran (iEdg‘𝐺))
14 elrnrexdm 5737 . . . 4 (Fun (iEdg‘𝐺) → (𝐶 ∈ ran (iEdg‘𝐺) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧)))
1512, 13, 14sylc 62 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧))
16 simpll 527 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐺 ∈ UPGraph)
1716, 9syl 14 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
18 simprl 529 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝑧 ∈ dom (iEdg‘𝐺))
196, 7upgrex 15784 . . . . 5 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑧 ∈ dom (iEdg‘𝐺)) → ∃𝑎𝑉𝑏𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})
2016, 17, 18, 19syl3anc 1250 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎𝑉𝑏𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})
21 simprr 531 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐶 = ((iEdg‘𝐺)‘𝑧))
2221eqeq1d 2215 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (𝐶 = {𝑎, 𝑏} ↔ ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}))
23222rexbidv 2532 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}))
2420, 23mpbird 167 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
2515, 24rexlimddv 2629 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
265, 25syldan 282 1 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  wrex 2486  {crab 2489  𝒫 cpw 3621  {cpr 3639   class class class wbr 4054  dom cdm 4688  ran crn 4689  Fun wfun 5279   Fn wfn 5280  cfv 5285  1oc1o 6513  2oc2o 6514  cen 6843  Vtxcvtx 15696  iEdgciedg 15697  Edgcedg 15739  UPGraphcupgr 15772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-1o 6520  df-2o 6521  df-en 6846  df-sub 8275  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-dec 9535  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-vtx 15698  df-iedg 15699  df-edg 15740  df-upgren 15774
This theorem is referenced by:  upgrpredgv  15820  upgredg2vtx  15822  upgredgpr  15823
  Copyright terms: Public domain W3C validator