| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgredg | GIF version | ||
| Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| upgredg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | edgvalg 15854 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
| 3 | 1, 2 | eqtrid 2274 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺)) |
| 4 | 3 | eleq2d 2299 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ran (iEdg‘𝐺))) |
| 5 | 4 | biimpa 296 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → 𝐶 ∈ ran (iEdg‘𝐺)) |
| 6 | upgredg.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | eqid 2229 | . . . . . . . 8 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 8 | 6, 7 | upgrfen 15891 | . . . . . . 7 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 9 | 8 | ffnd 5473 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
| 11 | fnfun 5417 | . . . . 5 ⊢ ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → Fun (iEdg‘𝐺)) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → Fun (iEdg‘𝐺)) |
| 13 | simpr 110 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → 𝐶 ∈ ran (iEdg‘𝐺)) | |
| 14 | elrnrexdm 5773 | . . . 4 ⊢ (Fun (iEdg‘𝐺) → (𝐶 ∈ ran (iEdg‘𝐺) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧))) | |
| 15 | 12, 13, 14 | sylc 62 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑧 ∈ dom (iEdg‘𝐺)𝐶 = ((iEdg‘𝐺)‘𝑧)) |
| 16 | simpll 527 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐺 ∈ UPGraph) | |
| 17 | 16, 9 | syl 14 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
| 18 | simprl 529 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝑧 ∈ dom (iEdg‘𝐺)) | |
| 19 | 6, 7 | upgrex 15897 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑧 ∈ dom (iEdg‘𝐺)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}) |
| 20 | 16, 17, 18, 19 | syl3anc 1271 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏}) |
| 21 | simprr 531 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → 𝐶 = ((iEdg‘𝐺)‘𝑧)) | |
| 22 | 21 | eqeq1d 2238 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (𝐶 = {𝑎, 𝑏} ↔ ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})) |
| 23 | 22 | 2rexbidv 2555 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ((iEdg‘𝐺)‘𝑧) = {𝑎, 𝑏})) |
| 24 | 20, 23 | mpbird 167 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) ∧ (𝑧 ∈ dom (iEdg‘𝐺) ∧ 𝐶 = ((iEdg‘𝐺)‘𝑧))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| 25 | 15, 24 | rexlimddv 2653 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ ran (iEdg‘𝐺)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| 26 | 5, 25 | syldan 282 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 𝒫 cpw 3649 {cpr 3667 class class class wbr 4082 dom cdm 4718 ran crn 4719 Fun wfun 5311 Fn wfn 5312 ‘cfv 5317 1oc1o 6553 2oc2o 6554 ≈ cen 6883 Vtxcvtx 15807 iEdgciedg 15808 Edgcedg 15852 UPGraphcupgr 15885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-en 6886 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-base 13033 df-edgf 15800 df-vtx 15809 df-iedg 15810 df-edg 15853 df-upgren 15887 |
| This theorem is referenced by: upgrpredgv 15938 upgredg2vtx 15940 upgredgpr 15941 |
| Copyright terms: Public domain | W3C validator |