| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgrop | GIF version | ||
| Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.) |
| Ref | Expression |
|---|---|
| upgrop | ⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2229 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | upgrfen 15905 | . 2 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)}) |
| 4 | vtxex 15827 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Vtx‘𝐺) ∈ V) | |
| 5 | iedgex 15828 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺) ∈ V) | |
| 6 | opexg 4314 | . . . . 5 ⊢ (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V) | |
| 7 | 4, 5, 6 | syl2anc 411 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V) |
| 8 | eqid 2229 | . . . . 5 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
| 9 | eqid 2229 | . . . . 5 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
| 10 | 8, 9 | isupgren 15903 | . . . 4 ⊢ (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V → (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph ↔ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉):dom (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)⟶{𝑝 ∈ 𝒫 (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 11 | 7, 10 | syl 14 | . . 3 ⊢ (𝐺 ∈ UPGraph → (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph ↔ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉):dom (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)⟶{𝑝 ∈ 𝒫 (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 12 | opiedgfv 15834 | . . . . 5 ⊢ (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺)) | |
| 13 | 4, 5, 12 | syl2anc 411 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺)) |
| 14 | 13 | dmeqd 4925 | . . . 4 ⊢ (𝐺 ∈ UPGraph → dom (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = dom (iEdg‘𝐺)) |
| 15 | opvtxfv 15831 | . . . . . . 7 ⊢ (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺)) | |
| 16 | 4, 5, 15 | syl2anc 411 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺)) |
| 17 | 16 | pweqd 3654 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝒫 (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = 𝒫 (Vtx‘𝐺)) |
| 18 | 17 | rabeqdv 2793 | . . . 4 ⊢ (𝐺 ∈ UPGraph → {𝑝 ∈ 𝒫 (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)} = {𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)}) |
| 19 | 13, 14, 18 | feq123d 5464 | . . 3 ⊢ (𝐺 ∈ UPGraph → ((iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉):dom (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)⟶{𝑝 ∈ 𝒫 (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 20 | 11, 19 | bitrd 188 | . 2 ⊢ (𝐺 ∈ UPGraph → (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 21 | 3, 20 | mpbird 167 | 1 ⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 𝒫 cpw 3649 〈cop 3669 class class class wbr 4083 dom cdm 4719 ⟶wf 5314 ‘cfv 5318 1oc1o 6561 2oc2o 6562 ≈ cen 6893 Vtxcvtx 15821 iEdgciedg 15822 UPGraphcupgr 15899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-upgren 15901 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |