ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredg4 Unicode version

Theorem usgredg4 16021
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v  |-  V  =  (Vtx `  G )
usgredg3.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
usgredg4  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E  /\  Y  e.  ( E `  X
) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
Distinct variable groups:    y, E    y, G    y, V    y, X    y, Y

Proof of Theorem usgredg4
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . . 4  |-  V  =  (Vtx `  G )
2 usgredg3.e . . . 4  |-  E  =  (iEdg `  G )
31, 2usgredg3 16020 . . 3  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E )  ->  E. x  e.  V  E. z  e.  V  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )
4 eleq2 2293 . . . . . . . 8  |-  ( ( E `  X )  =  { x ,  z }  ->  ( Y  e.  ( E `  X )  <->  Y  e.  { x ,  z } ) )
54adantl 277 . . . . . . 7  |-  ( ( x  =/=  z  /\  ( E `  X )  =  { x ,  z } )  -> 
( Y  e.  ( E `  X )  <-> 
Y  e.  { x ,  z } ) )
65adantl 277 . . . . . 6  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( Y  e.  ( E `  X
)  <->  Y  e.  { x ,  z } ) )
7 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  z  e.  V )
87adantl 277 . . . . . . . . . . 11  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  z  e.  V )
9 preq2 3744 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  { x ,  y }  =  { x ,  z } )
109eqeq2d 2241 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( { x ,  z }  =  { x ,  y }  <->  { x ,  z }  =  { x ,  z } ) )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e. 
dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  /\  (
x  =/=  z  /\  ( E `  X )  =  { x ,  z } ) ) )  /\  y  =  z )  ->  ( { x ,  z }  =  { x ,  y }  <->  { x ,  z }  =  { x ,  z } ) )
12 eqidd 2230 . . . . . . . . . . 11  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  { x ,  z }  =  { x ,  z } )
138, 11, 12rspcedvd 2913 . . . . . . . . . 10  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  { x ,  z }  =  { x ,  y } )
14 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( E `  X )  =  {
x ,  z } )
15 preq1 3743 . . . . . . . . . . . 12  |-  ( Y  =  x  ->  { Y ,  y }  =  { x ,  y } )
1614, 15eqeqan12rd 2246 . . . . . . . . . . 11  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  (
( E `  X
)  =  { Y ,  y }  <->  { x ,  z }  =  { x ,  y } ) )
1716rexbidv 2531 . . . . . . . . . 10  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  ( E. y  e.  V  ( E `  X )  =  { Y , 
y }  <->  E. y  e.  V  { x ,  z }  =  { x ,  y } ) )
1813, 17mpbird 167 . . . . . . . . 9  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
1918ex 115 . . . . . . . 8  |-  ( Y  =  x  ->  (
( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
20 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  x  e.  V )
2120adantl 277 . . . . . . . . . . 11  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  x  e.  V )
22 preq2 3744 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  { z ,  y }  =  { z ,  x } )
2322eqeq2d 2241 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( { x ,  z }  =  { z ,  y }  <->  { x ,  z }  =  { z ,  x } ) )
2423adantl 277 . . . . . . . . . . 11  |-  ( ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e. 
dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  /\  (
x  =/=  z  /\  ( E `  X )  =  { x ,  z } ) ) )  /\  y  =  x )  ->  ( { x ,  z }  =  { z ,  y }  <->  { x ,  z }  =  { z ,  x } ) )
25 prcom 3742 . . . . . . . . . . . 12  |-  { x ,  z }  =  { z ,  x }
2625a1i 9 . . . . . . . . . . 11  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  { x ,  z }  =  { z ,  x } )
2721, 24, 26rspcedvd 2913 . . . . . . . . . 10  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  { x ,  z }  =  { z ,  y } )
28 preq1 3743 . . . . . . . . . . . 12  |-  ( Y  =  z  ->  { Y ,  y }  =  { z ,  y } )
2914, 28eqeqan12rd 2246 . . . . . . . . . . 11  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  (
( E `  X
)  =  { Y ,  y }  <->  { x ,  z }  =  { z ,  y } ) )
3029rexbidv 2531 . . . . . . . . . 10  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  ( E. y  e.  V  ( E `  X )  =  { Y , 
y }  <->  E. y  e.  V  { x ,  z }  =  { z ,  y } ) )
3127, 30mpbird 167 . . . . . . . . 9  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
3231ex 115 . . . . . . . 8  |-  ( Y  =  z  ->  (
( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
3319, 32jaoi 721 . . . . . . 7  |-  ( ( Y  =  x  \/  Y  =  z )  ->  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  /\  (
x  =/=  z  /\  ( E `  X )  =  { x ,  z } ) )  ->  E. y  e.  V  ( E `  X )  =  { Y , 
y } ) )
34 elpri 3689 . . . . . . 7  |-  ( Y  e.  { x ,  z }  ->  ( Y  =  x  \/  Y  =  z )
)
3533, 34syl11 31 . . . . . 6  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( Y  e.  { x ,  z }  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
366, 35sylbid 150 . . . . 5  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( Y  e.  ( E `  X
)  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
3736ex 115 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  ->  (
( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } )  ->  ( Y  e.  ( E `  X
)  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) ) )
3837rexlimdvva 2656 . . 3  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E )  -> 
( E. x  e.  V  E. z  e.  V  ( x  =/=  z  /\  ( E `
 X )  =  { x ,  z } )  ->  ( Y  e.  ( E `  X )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) ) )
393, 38mpd 13 . 2  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E )  -> 
( Y  e.  ( E `  X )  ->  E. y  e.  V  ( E `  X )  =  { Y , 
y } ) )
40393impia 1224 1  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E  /\  Y  e.  ( E `  X
) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   {cpr 3667   dom cdm 4719   ` cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  USGraphcusgr 15960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-umgren 15902  df-usgren 15962
This theorem is referenced by:  usgredgreu  16022
  Copyright terms: Public domain W3C validator