| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgredg4 | Unicode version | ||
| Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgredg3.v |
|
| usgredg3.e |
|
| Ref | Expression |
|---|---|
| usgredg4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v |
. . . 4
| |
| 2 | usgredg3.e |
. . . 4
| |
| 3 | 1, 2 | usgredg3 15977 |
. . 3
|
| 4 | eleq2 2273 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 8 | 7 | adantl 277 |
. . . . . . . . . . 11
|
| 9 | preq2 3724 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eqeq2d 2221 |
. . . . . . . . . . . 12
|
| 11 | 10 | adantl 277 |
. . . . . . . . . . 11
|
| 12 | eqidd 2210 |
. . . . . . . . . . 11
| |
| 13 | 8, 11, 12 | rspcedvd 2893 |
. . . . . . . . . 10
|
| 14 | simprr 531 |
. . . . . . . . . . . 12
| |
| 15 | preq1 3723 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | eqeqan12rd 2226 |
. . . . . . . . . . 11
|
| 17 | 16 | rexbidv 2511 |
. . . . . . . . . 10
|
| 18 | 13, 17 | mpbird 167 |
. . . . . . . . 9
|
| 19 | 18 | ex 115 |
. . . . . . . 8
|
| 20 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 21 | 20 | adantl 277 |
. . . . . . . . . . 11
|
| 22 | preq2 3724 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | eqeq2d 2221 |
. . . . . . . . . . . 12
|
| 24 | 23 | adantl 277 |
. . . . . . . . . . 11
|
| 25 | prcom 3722 |
. . . . . . . . . . . 12
| |
| 26 | 25 | a1i 9 |
. . . . . . . . . . 11
|
| 27 | 21, 24, 26 | rspcedvd 2893 |
. . . . . . . . . 10
|
| 28 | preq1 3723 |
. . . . . . . . . . . 12
| |
| 29 | 14, 28 | eqeqan12rd 2226 |
. . . . . . . . . . 11
|
| 30 | 29 | rexbidv 2511 |
. . . . . . . . . 10
|
| 31 | 27, 30 | mpbird 167 |
. . . . . . . . 9
|
| 32 | 31 | ex 115 |
. . . . . . . 8
|
| 33 | 19, 32 | jaoi 720 |
. . . . . . 7
|
| 34 | elpri 3669 |
. . . . . . 7
| |
| 35 | 33, 34 | syl11 31 |
. . . . . 6
|
| 36 | 6, 35 | sylbid 150 |
. . . . 5
|
| 37 | 36 | ex 115 |
. . . 4
|
| 38 | 37 | rexlimdvva 2636 |
. . 3
|
| 39 | 3, 38 | mpd 13 |
. 2
|
| 40 | 39 | 3impia 1205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-1o 6532 df-2o 6533 df-er 6650 df-en 6858 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-edg 15824 df-umgren 15859 df-usgren 15919 |
| This theorem is referenced by: usgredgreu 15979 |
| Copyright terms: Public domain | W3C validator |