ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredg4 Unicode version

Theorem usgredg4 15978
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v  |-  V  =  (Vtx `  G )
usgredg3.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
usgredg4  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E  /\  Y  e.  ( E `  X
) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
Distinct variable groups:    y, E    y, G    y, V    y, X    y, Y

Proof of Theorem usgredg4
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . . 4  |-  V  =  (Vtx `  G )
2 usgredg3.e . . . 4  |-  E  =  (iEdg `  G )
31, 2usgredg3 15977 . . 3  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E )  ->  E. x  e.  V  E. z  e.  V  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )
4 eleq2 2273 . . . . . . . 8  |-  ( ( E `  X )  =  { x ,  z }  ->  ( Y  e.  ( E `  X )  <->  Y  e.  { x ,  z } ) )
54adantl 277 . . . . . . 7  |-  ( ( x  =/=  z  /\  ( E `  X )  =  { x ,  z } )  -> 
( Y  e.  ( E `  X )  <-> 
Y  e.  { x ,  z } ) )
65adantl 277 . . . . . 6  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( Y  e.  ( E `  X
)  <->  Y  e.  { x ,  z } ) )
7 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  z  e.  V )
87adantl 277 . . . . . . . . . . 11  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  z  e.  V )
9 preq2 3724 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  { x ,  y }  =  { x ,  z } )
109eqeq2d 2221 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( { x ,  z }  =  { x ,  y }  <->  { x ,  z }  =  { x ,  z } ) )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e. 
dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  /\  (
x  =/=  z  /\  ( E `  X )  =  { x ,  z } ) ) )  /\  y  =  z )  ->  ( { x ,  z }  =  { x ,  y }  <->  { x ,  z }  =  { x ,  z } ) )
12 eqidd 2210 . . . . . . . . . . 11  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  { x ,  z }  =  { x ,  z } )
138, 11, 12rspcedvd 2893 . . . . . . . . . 10  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  { x ,  z }  =  { x ,  y } )
14 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( E `  X )  =  {
x ,  z } )
15 preq1 3723 . . . . . . . . . . . 12  |-  ( Y  =  x  ->  { Y ,  y }  =  { x ,  y } )
1614, 15eqeqan12rd 2226 . . . . . . . . . . 11  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  (
( E `  X
)  =  { Y ,  y }  <->  { x ,  z }  =  { x ,  y } ) )
1716rexbidv 2511 . . . . . . . . . 10  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  ( E. y  e.  V  ( E `  X )  =  { Y , 
y }  <->  E. y  e.  V  { x ,  z }  =  { x ,  y } ) )
1813, 17mpbird 167 . . . . . . . . 9  |-  ( ( Y  =  x  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
1918ex 115 . . . . . . . 8  |-  ( Y  =  x  ->  (
( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
20 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  x  e.  V )
2120adantl 277 . . . . . . . . . . 11  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  x  e.  V )
22 preq2 3724 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  { z ,  y }  =  { z ,  x } )
2322eqeq2d 2221 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( { x ,  z }  =  { z ,  y }  <->  { x ,  z }  =  { z ,  x } ) )
2423adantl 277 . . . . . . . . . . 11  |-  ( ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e. 
dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  /\  (
x  =/=  z  /\  ( E `  X )  =  { x ,  z } ) ) )  /\  y  =  x )  ->  ( { x ,  z }  =  { z ,  y }  <->  { x ,  z }  =  { z ,  x } ) )
25 prcom 3722 . . . . . . . . . . . 12  |-  { x ,  z }  =  { z ,  x }
2625a1i 9 . . . . . . . . . . 11  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  { x ,  z }  =  { z ,  x } )
2721, 24, 26rspcedvd 2893 . . . . . . . . . 10  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  { x ,  z }  =  { z ,  y } )
28 preq1 3723 . . . . . . . . . . . 12  |-  ( Y  =  z  ->  { Y ,  y }  =  { z ,  y } )
2914, 28eqeqan12rd 2226 . . . . . . . . . . 11  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  (
( E `  X
)  =  { Y ,  y }  <->  { x ,  z }  =  { z ,  y } ) )
3029rexbidv 2511 . . . . . . . . . 10  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  ( E. y  e.  V  ( E `  X )  =  { Y , 
y }  <->  E. y  e.  V  { x ,  z }  =  { z ,  y } ) )
3127, 30mpbird 167 . . . . . . . . 9  |-  ( ( Y  =  z  /\  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
3231ex 115 . . . . . . . 8  |-  ( Y  =  z  ->  (
( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
3319, 32jaoi 720 . . . . . . 7  |-  ( ( Y  =  x  \/  Y  =  z )  ->  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  /\  (
x  =/=  z  /\  ( E `  X )  =  { x ,  z } ) )  ->  E. y  e.  V  ( E `  X )  =  { Y , 
y } ) )
34 elpri 3669 . . . . . . 7  |-  ( Y  e.  { x ,  z }  ->  ( Y  =  x  \/  Y  =  z )
)
3533, 34syl11 31 . . . . . 6  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( Y  e.  { x ,  z }  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
366, 35sylbid 150 . . . . 5  |-  ( ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V ) )  /\  ( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } ) )  ->  ( Y  e.  ( E `  X
)  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) )
3736ex 115 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  dom  E )  /\  ( x  e.  V  /\  z  e.  V
) )  ->  (
( x  =/=  z  /\  ( E `  X
)  =  { x ,  z } )  ->  ( Y  e.  ( E `  X
)  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) ) )
3837rexlimdvva 2636 . . 3  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E )  -> 
( E. x  e.  V  E. z  e.  V  ( x  =/=  z  /\  ( E `
 X )  =  { x ,  z } )  ->  ( Y  e.  ( E `  X )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
) ) )
393, 38mpd 13 . 2  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E )  -> 
( Y  e.  ( E `  X )  ->  E. y  e.  V  ( E `  X )  =  { Y , 
y } ) )
40393impia 1205 1  |-  ( ( G  e. USGraph  /\  X  e. 
dom  E  /\  Y  e.  ( E `  X
) )  ->  E. y  e.  V  ( E `  X )  =  { Y ,  y }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712    /\ w3a 983    = wceq 1375    e. wcel 2180    =/= wne 2380   E.wrex 2489   {cpr 3647   dom cdm 4696   ` cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-umgren 15859  df-usgren 15919
This theorem is referenced by:  usgredgreu  15979
  Copyright terms: Public domain W3C validator