| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgredg4 | Unicode version | ||
| Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgredg3.v |
|
| usgredg3.e |
|
| Ref | Expression |
|---|---|
| usgredg4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v |
. . . 4
| |
| 2 | usgredg3.e |
. . . 4
| |
| 3 | 1, 2 | usgredg3 16020 |
. . 3
|
| 4 | eleq2 2293 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 8 | 7 | adantl 277 |
. . . . . . . . . . 11
|
| 9 | preq2 3744 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eqeq2d 2241 |
. . . . . . . . . . . 12
|
| 11 | 10 | adantl 277 |
. . . . . . . . . . 11
|
| 12 | eqidd 2230 |
. . . . . . . . . . 11
| |
| 13 | 8, 11, 12 | rspcedvd 2913 |
. . . . . . . . . 10
|
| 14 | simprr 531 |
. . . . . . . . . . . 12
| |
| 15 | preq1 3743 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | eqeqan12rd 2246 |
. . . . . . . . . . 11
|
| 17 | 16 | rexbidv 2531 |
. . . . . . . . . 10
|
| 18 | 13, 17 | mpbird 167 |
. . . . . . . . 9
|
| 19 | 18 | ex 115 |
. . . . . . . 8
|
| 20 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 21 | 20 | adantl 277 |
. . . . . . . . . . 11
|
| 22 | preq2 3744 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | eqeq2d 2241 |
. . . . . . . . . . . 12
|
| 24 | 23 | adantl 277 |
. . . . . . . . . . 11
|
| 25 | prcom 3742 |
. . . . . . . . . . . 12
| |
| 26 | 25 | a1i 9 |
. . . . . . . . . . 11
|
| 27 | 21, 24, 26 | rspcedvd 2913 |
. . . . . . . . . 10
|
| 28 | preq1 3743 |
. . . . . . . . . . . 12
| |
| 29 | 14, 28 | eqeqan12rd 2246 |
. . . . . . . . . . 11
|
| 30 | 29 | rexbidv 2531 |
. . . . . . . . . 10
|
| 31 | 27, 30 | mpbird 167 |
. . . . . . . . 9
|
| 32 | 31 | ex 115 |
. . . . . . . 8
|
| 33 | 19, 32 | jaoi 721 |
. . . . . . 7
|
| 34 | elpri 3689 |
. . . . . . 7
| |
| 35 | 33, 34 | syl11 31 |
. . . . . 6
|
| 36 | 6, 35 | sylbid 150 |
. . . . 5
|
| 37 | 36 | ex 115 |
. . . 4
|
| 38 | 37 | rexlimdvva 2656 |
. . 3
|
| 39 | 3, 38 | mpd 13 |
. 2
|
| 40 | 39 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-edg 15867 df-umgren 15902 df-usgren 15962 |
| This theorem is referenced by: usgredgreu 16022 |
| Copyright terms: Public domain | W3C validator |