| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcl | GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8245 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 8063 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 8270 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2291 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 0cc0 7924 − cmin 8242 -cneg 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-neg 8245 |
| This theorem is referenced by: negicn 8272 negcon1 8323 negdi 8328 negdi2 8329 negsubdi2 8330 neg2sub 8331 negcli 8339 negcld 8369 mulneg2 8467 mul2neg 8469 mulsub 8472 apsub1 8714 subap0 8715 divnegap 8778 divsubdirap 8780 divsubdivap 8800 eqneg 8804 div2negap 8807 divneg2ap 8808 zeo 9477 sqneg 10741 binom2sub 10796 shftval4 11081 shftcan1 11087 shftcan2 11088 crim 11111 resub 11123 imsub 11131 cjneg 11143 cjsub 11145 absneg 11303 abs2dif2 11360 subcn2 11564 efcan 11929 efap0 11930 efne0 11931 efneg 11932 efsub 11934 sinneg 11979 cosneg 11980 tannegap 11981 efmival 11986 sinsub 11993 cossub 11994 sincossq 12001 cncrng 14273 cnfldneg 14277 sin2pim 15227 cos2pim 15228 rpcxpsub 15322 |
| Copyright terms: Public domain | W3C validator |