| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcl | GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8266 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 8084 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 8291 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2293 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 0cc0 7945 − cmin 8263 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-neg 8266 |
| This theorem is referenced by: negicn 8293 negcon1 8344 negdi 8349 negdi2 8350 negsubdi2 8351 neg2sub 8352 negcli 8360 negcld 8390 mulneg2 8488 mul2neg 8490 mulsub 8493 apsub1 8735 subap0 8736 divnegap 8799 divsubdirap 8801 divsubdivap 8821 eqneg 8825 div2negap 8828 divneg2ap 8829 zeo 9498 sqneg 10765 binom2sub 10820 shftval4 11214 shftcan1 11220 shftcan2 11221 crim 11244 resub 11256 imsub 11264 cjneg 11276 cjsub 11278 absneg 11436 abs2dif2 11493 subcn2 11697 efcan 12062 efap0 12063 efne0 12064 efneg 12065 efsub 12067 sinneg 12112 cosneg 12113 tannegap 12114 efmival 12119 sinsub 12126 cossub 12127 sincossq 12134 cncrng 14406 cnfldneg 14410 sin2pim 15360 cos2pim 15361 rpcxpsub 15455 |
| Copyright terms: Public domain | W3C validator |