ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcl GIF version

Theorem negcl 7583
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.)
Assertion
Ref Expression
negcl (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)

Proof of Theorem negcl
StepHypRef Expression
1 df-neg 7557 . 2 -𝐴 = (0 − 𝐴)
2 0cn 7381 . . 3 0 ∈ ℂ
3 subcl 7582 . . 3 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ)
42, 3mpan 415 . 2 (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ)
51, 4syl5eqel 2169 1 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434  (class class class)co 5589  cc 7249  0cc0 7251  cmin 7554  -cneg 7555
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-setind 4315  ax-resscn 7338  ax-1cn 7339  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-iota 4932  df-fun 4969  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-sub 7556  df-neg 7557
This theorem is referenced by:  negicn  7584  negcon1  7635  negdi  7640  negdi2  7641  negsubdi2  7642  neg2sub  7643  negcli  7651  negcld  7681  mulneg2  7775  mul2neg  7777  mulsub  7780  divnegap  8069  divsubdirap  8071  divsubdivap  8091  eqneg  8095  div2negap  8098  divneg2ap  8099  zeo  8745  sqneg  9849  binom2sub  9901  shftval4  10088  shftcan1  10094  shftcan2  10095  crim  10117  resub  10129  imsub  10137  cjneg  10149  cjsub  10151  absneg  10308  abs2dif2  10365  subcn2  10522
  Copyright terms: Public domain W3C validator