ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcl GIF version

Theorem negcl 8342
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.)
Assertion
Ref Expression
negcl (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)

Proof of Theorem negcl
StepHypRef Expression
1 df-neg 8316 . 2 -𝐴 = (0 − 𝐴)
2 0cn 8134 . . 3 0 ∈ ℂ
3 subcl 8341 . . 3 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ)
42, 3mpan 424 . 2 (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ)
51, 4eqeltrid 2316 1 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6000  cc 7993  0cc0 7995  cmin 8313  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316
This theorem is referenced by:  negicn  8343  negcon1  8394  negdi  8399  negdi2  8400  negsubdi2  8401  neg2sub  8402  negcli  8410  negcld  8440  mulneg2  8538  mul2neg  8540  mulsub  8543  apsub1  8785  subap0  8786  divnegap  8849  divsubdirap  8851  divsubdivap  8871  eqneg  8875  div2negap  8878  divneg2ap  8879  zeo  9548  sqneg  10815  binom2sub  10870  shftval4  11334  shftcan1  11340  shftcan2  11341  crim  11364  resub  11376  imsub  11384  cjneg  11396  cjsub  11398  absneg  11556  abs2dif2  11613  subcn2  11817  efcan  12182  efap0  12183  efne0  12184  efneg  12185  efsub  12187  sinneg  12232  cosneg  12233  tannegap  12234  efmival  12239  sinsub  12246  cossub  12247  sincossq  12254  cncrng  14527  cnfldneg  14531  sin2pim  15481  cos2pim  15482  rpcxpsub  15576
  Copyright terms: Public domain W3C validator