| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcl | GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8219 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 8037 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 8244 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2283 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 − cmin 8216 -cneg 8217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-neg 8219 |
| This theorem is referenced by: negicn 8246 negcon1 8297 negdi 8302 negdi2 8303 negsubdi2 8304 neg2sub 8305 negcli 8313 negcld 8343 mulneg2 8441 mul2neg 8443 mulsub 8446 apsub1 8688 subap0 8689 divnegap 8752 divsubdirap 8754 divsubdivap 8774 eqneg 8778 div2negap 8781 divneg2ap 8782 zeo 9450 sqneg 10709 binom2sub 10764 shftval4 11012 shftcan1 11018 shftcan2 11019 crim 11042 resub 11054 imsub 11062 cjneg 11074 cjsub 11076 absneg 11234 abs2dif2 11291 subcn2 11495 efcan 11860 efap0 11861 efne0 11862 efneg 11863 efsub 11865 sinneg 11910 cosneg 11911 tannegap 11912 efmival 11917 sinsub 11924 cossub 11925 sincossq 11932 cncrng 14203 cnfldneg 14207 sin2pim 15157 cos2pim 15158 rpcxpsub 15252 |
| Copyright terms: Public domain | W3C validator |