![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negcl | GIF version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 8195 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 0cn 8013 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subcl 8220 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
5 | 1, 4 | eqeltrid 2280 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 0cc0 7874 − cmin 8192 -cneg 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-neg 8195 |
This theorem is referenced by: negicn 8222 negcon1 8273 negdi 8278 negdi2 8279 negsubdi2 8280 neg2sub 8281 negcli 8289 negcld 8319 mulneg2 8417 mul2neg 8419 mulsub 8422 apsub1 8663 subap0 8664 divnegap 8727 divsubdirap 8729 divsubdivap 8749 eqneg 8753 div2negap 8756 divneg2ap 8757 zeo 9425 sqneg 10672 binom2sub 10727 shftval4 10975 shftcan1 10981 shftcan2 10982 crim 11005 resub 11017 imsub 11025 cjneg 11037 cjsub 11039 absneg 11197 abs2dif2 11254 subcn2 11457 efcan 11822 efap0 11823 efne0 11824 efneg 11825 efsub 11827 sinneg 11872 cosneg 11873 tannegap 11874 efmival 11879 sinsub 11886 cossub 11887 sincossq 11894 cncrng 14068 cnfldneg 14072 sin2pim 14989 cos2pim 14990 rpcxpsub 15084 |
Copyright terms: Public domain | W3C validator |