| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcl | GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8316 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 8134 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 8341 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2316 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 0cc0 7995 − cmin 8313 -cneg 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: negicn 8343 negcon1 8394 negdi 8399 negdi2 8400 negsubdi2 8401 neg2sub 8402 negcli 8410 negcld 8440 mulneg2 8538 mul2neg 8540 mulsub 8543 apsub1 8785 subap0 8786 divnegap 8849 divsubdirap 8851 divsubdivap 8871 eqneg 8875 div2negap 8878 divneg2ap 8879 zeo 9548 sqneg 10815 binom2sub 10870 shftval4 11334 shftcan1 11340 shftcan2 11341 crim 11364 resub 11376 imsub 11384 cjneg 11396 cjsub 11398 absneg 11556 abs2dif2 11613 subcn2 11817 efcan 12182 efap0 12183 efne0 12184 efneg 12185 efsub 12187 sinneg 12232 cosneg 12233 tannegap 12234 efmival 12239 sinsub 12246 cossub 12247 sincossq 12254 cncrng 14527 cnfldneg 14531 sin2pim 15481 cos2pim 15482 rpcxpsub 15576 |
| Copyright terms: Public domain | W3C validator |