| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prml | GIF version | ||
| Description: A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| prml | ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinp 7649 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))))) | |
| 2 | simplrl 535 | . 2 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈)))) → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 Qcnq 7455 <Q cltq 7460 Pcnp 7466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-qs 6676 df-ni 7479 df-nqqs 7523 df-inp 7641 |
| This theorem is referenced by: 0npr 7658 prarloc 7678 genpml 7692 prmuloc 7741 ltaddpr 7772 ltexprlemm 7775 ltexprlemloc 7782 recexprlemm 7799 archrecpr 7839 caucvgprprlemml 7869 suplocexprlemml 7891 |
| Copyright terms: Public domain | W3C validator |