![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prml | GIF version |
Description: A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
Ref | Expression |
---|---|
prml | ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinp 7130 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))))) | |
2 | simplrl 503 | . 2 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈)))) → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 667 ∧ w3a 927 ∈ wcel 1445 ∀wral 2370 ∃wrex 2371 ⊆ wss 3013 〈cop 3469 class class class wbr 3867 Qcnq 6936 <Q cltq 6941 Pcnp 6947 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-qs 6338 df-ni 6960 df-nqqs 7004 df-inp 7122 |
This theorem is referenced by: 0npr 7139 prarloc 7159 genpml 7173 prmuloc 7222 ltaddpr 7253 ltexprlemm 7256 ltexprlemloc 7263 recexprlemm 7280 archrecpr 7320 caucvgprprlemml 7350 |
Copyright terms: Public domain | W3C validator |