ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prml GIF version

Theorem prml 7309
Description: A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prml (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prml
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elinp 7306 . 2 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))))
2 simplrl 525 . 2 ((((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))) → ∃𝑥Q 𝑥𝐿)
31, 2sylbi 120 1 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963  wcel 1481  wral 2417  wrex 2418  wss 3076  cop 3535   class class class wbr 3937  Qcnq 7112   <Q cltq 7117  Pcnp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-qs 6443  df-ni 7136  df-nqqs 7180  df-inp 7298
This theorem is referenced by:  0npr  7315  prarloc  7335  genpml  7349  prmuloc  7398  ltaddpr  7429  ltexprlemm  7432  ltexprlemloc  7439  recexprlemm  7456  archrecpr  7496  caucvgprprlemml  7526  suplocexprlemml  7548
  Copyright terms: Public domain W3C validator