Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mstri GIF version

Theorem mstri 12701
 Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Base‘𝑀)
mscl.d 𝐷 = (dist‘𝑀)
Assertion
Ref Expression
mstri ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))

Proof of Theorem mstri
StepHypRef Expression
1 mscl.x . . . 4 𝑋 = (Base‘𝑀)
2 mscl.d . . . 4 𝐷 = (dist‘𝑀)
31, 2msmet2 12692 . . 3 (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
4 mettri 12601 . . 3 (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)))
53, 4sylan 281 . 2 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)))
6 simpr1 988 . . 3 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
7 simpr2 989 . . 3 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
86, 7ovresd 5920 . 2 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
9 simpr3 990 . . . 4 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
106, 9ovresd 5920 . . 3 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐴𝐷𝐶))
119, 7ovresd 5920 . . 3 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐶𝐷𝐵))
1210, 11oveq12d 5801 . 2 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)) = ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
135, 8, 123brtr3d 3968 1 ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3938   × cxp 4546   ↾ cres 4550  ‘cfv 5132  (class class class)co 5783   + caddc 7667   ≤ cle 7845  Basecbs 12018  distcds 12089  Metcmet 12209  MetSpcms 12565 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782  ax-arch 7783  ax-caucvg 7784 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-isom 5141  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-recs 6211  df-frec 6297  df-map 6553  df-sup 6881  df-inf 6882  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-5 8826  df-6 8827  df-7 8828  df-8 8829  df-9 8830  df-n0 9022  df-z 9099  df-uz 9371  df-q 9459  df-rp 9491  df-xneg 9609  df-xadd 9610  df-seqfrec 10270  df-exp 10344  df-cj 10666  df-re 10667  df-im 10668  df-rsqrt 10822  df-abs 10823  df-ndx 12021  df-slot 12022  df-base 12024  df-tset 12099  df-rest 12181  df-topn 12182  df-topgen 12200  df-psmet 12215  df-xmet 12216  df-met 12217  df-bl 12218  df-mopn 12219  df-top 12224  df-topon 12237  df-topsp 12257  df-bases 12269  df-xms 12567  df-ms 12568 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator