Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mstri2 GIF version

Theorem mstri2 12818
 Description: Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Base‘𝑀)
mscl.d 𝐷 = (dist‘𝑀)
Assertion
Ref Expression
mstri2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))

Proof of Theorem mstri2
StepHypRef Expression
1 mscl.x . . . 4 𝑋 = (Base‘𝑀)
2 mscl.d . . . 4 𝐷 = (dist‘𝑀)
31, 2msmet2 12811 . . 3 (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
4 mettri2 12709 . . 3 (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)))
53, 4sylan 281 . 2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)))
6 simpr2 989 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
7 simpr3 990 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
86, 7ovresd 5951 . 2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
9 simpr1 988 . . . 4 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → 𝐶𝑋)
109, 6ovresd 5951 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) = (𝐶𝐷𝐴))
119, 7ovresd 5951 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐶𝐷𝐵))
1210, 11oveq12d 5832 . 2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → ((𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
135, 8, 123brtr3d 3991 1 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 2125   class class class wbr 3961   × cxp 4577   ↾ cres 4581  ‘cfv 5163  (class class class)co 5814   + caddc 7714   ≤ cle 7892  Basecbs 12137  distcds 12208  Metcmet 12328  MetSpcms 12684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-map 6584  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-ndx 12140  df-slot 12141  df-base 12143  df-tset 12218  df-rest 12300  df-topn 12301  df-topgen 12319  df-psmet 12334  df-xmet 12335  df-met 12336  df-bl 12337  df-mopn 12338  df-top 12343  df-topon 12356  df-topsp 12376  df-bases 12388  df-xms 12686  df-ms 12687 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator