Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divap1d | GIF version |
Description: If two complex numbers are apart, their quotient is apart from one. (Contributed by Jim Kingdon, 20-Mar-2020.) |
Ref | Expression |
---|---|
divcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divclapd.3 | ⊢ (𝜑 → 𝐵 # 0) |
divap1d.4 | ⊢ (𝜑 → 𝐴 # 𝐵) |
Ref | Expression |
---|---|
divap1d | ⊢ (𝜑 → (𝐴 / 𝐵) # 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divap1d.4 | . . 3 ⊢ (𝜑 → 𝐴 # 𝐵) | |
2 | divcld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | divcld.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | divclapd.3 | . . . . 5 ⊢ (𝜑 → 𝐵 # 0) | |
5 | 3, 4 | recclapd 8648 | . . . 4 ⊢ (𝜑 → (1 / 𝐵) ∈ ℂ) |
6 | 3, 4 | recap0d 8649 | . . . 4 ⊢ (𝜑 → (1 / 𝐵) # 0) |
7 | apmul1 8655 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((1 / 𝐵) ∈ ℂ ∧ (1 / 𝐵) # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · (1 / 𝐵)) # (𝐵 · (1 / 𝐵)))) | |
8 | 2, 3, 5, 6, 7 | syl112anc 1224 | . . 3 ⊢ (𝜑 → (𝐴 # 𝐵 ↔ (𝐴 · (1 / 𝐵)) # (𝐵 · (1 / 𝐵)))) |
9 | 1, 8 | mpbid 146 | . 2 ⊢ (𝜑 → (𝐴 · (1 / 𝐵)) # (𝐵 · (1 / 𝐵))) |
10 | 2, 3, 4 | divrecapd 8660 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
11 | 10 | eqcomd 2163 | . 2 ⊢ (𝜑 → (𝐴 · (1 / 𝐵)) = (𝐴 / 𝐵)) |
12 | 3, 4 | recidapd 8650 | . 2 ⊢ (𝜑 → (𝐵 · (1 / 𝐵)) = 1) |
13 | 9, 11, 12 | 3brtr3d 3995 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) # 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5821 ℂcc 7724 0cc0 7726 1c1 7727 · cmul 7731 # cap 8450 / cdiv 8539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-po 4256 df-iso 4257 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |