ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstri3 GIF version

Theorem xmstri3 15061
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Base‘𝑀)
mscl.d 𝐷 = (dist‘𝑀)
Assertion
Ref Expression
xmstri3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))

Proof of Theorem xmstri3
StepHypRef Expression
1 mscl.x . . . 4 𝑋 = (Base‘𝑀)
2 mscl.d . . . 4 𝐷 = (dist‘𝑀)
31, 2xmsxmet2 15050 . . 3 (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
4 xmettri3 14961 . . 3 (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) +𝑒 (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)))
53, 4sylan 283 . 2 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) +𝑒 (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)))
6 simpr1 1006 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
7 simpr2 1007 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
86, 7ovresd 6110 . 2 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
9 simpr3 1008 . . . 4 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
106, 9ovresd 6110 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐴𝐷𝐶))
117, 9ovresd 6110 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐵𝐷𝐶))
1210, 11oveq12d 5985 . 2 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) +𝑒 (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)) = ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
135, 8, 123brtr3d 4090 1 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178   class class class wbr 4059   × cxp 4691  cres 4695  cfv 5290  (class class class)co 5967  cle 8143   +𝑒 cxad 9927  Basecbs 12947  distcds 13033  ∞Metcxmet 14413  ∞MetSpcxms 14923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-ndx 12950  df-slot 12951  df-base 12953  df-tset 13043  df-rest 13188  df-topn 13189  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-topsp 14618  df-bases 14630  df-xms 14926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator