ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablressid GIF version

Theorem ablressid 13269
Description: A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12580. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
ablressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
ablressid (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)

Proof of Theorem ablressid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . 3 (𝐺 ∈ Abel → (𝐺s 𝐵) = (𝐺s 𝐵))
2 ablressid.b . . . 4 𝐵 = (Base‘𝐺)
32a1i 9 . . 3 (𝐺 ∈ Abel → 𝐵 = (Base‘𝐺))
4 id 19 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Abel)
5 ssidd 3191 . . 3 (𝐺 ∈ Abel → 𝐵𝐵)
61, 3, 4, 5ressbas2d 12577 . 2 (𝐺 ∈ Abel → 𝐵 = (Base‘(𝐺s 𝐵)))
7 eqidd 2190 . . 3 (𝐺 ∈ Abel → (+g𝐺) = (+g𝐺))
8 basfn 12569 . . . . 5 Base Fn V
9 elex 2763 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ V)
10 funfvex 5551 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5335 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . 4 (𝐺 ∈ Abel → (Base‘𝐺) ∈ V)
132, 12eqeltrid 2276 . . 3 (𝐺 ∈ Abel → 𝐵 ∈ V)
141, 7, 13, 9ressplusgd 12637 . 2 (𝐺 ∈ Abel → (+g𝐺) = (+g‘(𝐺s 𝐵)))
15 ablgrp 13225 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
162grpressid 13002 . . 3 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
1715, 16syl 14 . 2 (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Grp)
18 eqid 2189 . . 3 (+g𝐺) = (+g𝐺)
192, 18ablcom 13239 . 2 ((𝐺 ∈ Abel ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
206, 14, 17, 19isabld 13235 1 (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  Vcvv 2752   Fn wfn 5230  cfv 5235  (class class class)co 5895  Basecbs 12511  s cress 12512  +gcplusg 12586  Grpcgrp 12942  Abelcabl 13221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-cmn 13222  df-abl 13223
This theorem is referenced by:  rngressid  13305
  Copyright terms: Public domain W3C validator