![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qus1 | GIF version |
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
qus1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
qus1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
2 | 1 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
3 | eqid 2193 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | 3 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) = (Base‘𝑅)) |
5 | eqid 2193 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | eqid 2193 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | qus1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
8 | simpr 110 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ 𝐼) | |
9 | eqid 2193 | . . . . . . . 8 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
10 | eqid 2193 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
11 | eqid 2193 | . . . . . . . 8 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
12 | qusring.i | . . . . . . . 8 ⊢ 𝐼 = (2Ideal‘𝑅) | |
13 | 9, 10, 11, 12 | 2idlvalg 13999 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
14 | 13 | adantr 276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
15 | 8, 14 | eleqtrd 2272 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
16 | 15 | elin1d 3348 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (LIdeal‘𝑅)) |
17 | 9 | lidlsubg 13982 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
18 | 16, 17 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
19 | eqid 2193 | . . . 4 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
20 | 3, 19 | eqger 13294 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
21 | 18, 20 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
22 | ringabl 13528 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
23 | 22 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
24 | ablnsg 13404 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
25 | 23, 24 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
26 | 18, 25 | eleqtrrd 2273 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
27 | 3, 19, 5 | eqgcpbl 13298 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
28 | 26, 27 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
29 | 3, 19, 12, 6 | 2idlcpbl 14020 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
30 | simpl 109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
31 | 2, 4, 5, 6, 7, 21, 28, 29, 30 | qusring2 13562 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∩ cin 3152 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 Er wer 6584 [cec 6585 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 /s cqus 12883 SubGrpcsubg 13237 NrmSGrpcnsg 13238 ~QG cqg 13239 Abelcabl 13355 1rcur 13455 Ringcrg 13492 opprcoppr 13563 LIdealclidl 13963 2Idealc2idl 13995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-tpos 6298 df-er 6587 df-ec 6589 df-qs 6593 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-ip 12713 df-0g 12869 df-iimas 12885 df-qus 12886 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-sbg 13077 df-subg 13240 df-nsg 13241 df-eqg 13242 df-cmn 13356 df-abl 13357 df-mgp 13417 df-rng 13429 df-ur 13456 df-srg 13460 df-ring 13494 df-oppr 13564 df-subrg 13715 df-lmod 13785 df-lssm 13849 df-sra 13931 df-rgmod 13932 df-lidl 13965 df-2idl 13996 |
This theorem is referenced by: qusring 14023 qusrhm 14024 |
Copyright terms: Public domain | W3C validator |