ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus1 GIF version

Theorem qus1 14082
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qus1.o 1 = (1r𝑅)
Assertion
Ref Expression
qus1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))

Proof of Theorem qus1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
21a1i 9 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
3 eqid 2196 . . 3 (Base‘𝑅) = (Base‘𝑅)
43a1i 9 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
5 eqid 2196 . 2 (+g𝑅) = (+g𝑅)
6 eqid 2196 . 2 (.r𝑅) = (.r𝑅)
7 qus1.o . 2 1 = (1r𝑅)
8 simpr 110 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆𝐼)
9 eqid 2196 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
10 eqid 2196 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
11 eqid 2196 . . . . . . . 8 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
12 qusring.i . . . . . . . 8 𝐼 = (2Ideal‘𝑅)
139, 10, 11, 122idlvalg 14059 . . . . . . 7 (𝑅 ∈ Ring → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
1413adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
158, 14eleqtrd 2275 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
1615elin1d 3352 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (LIdeal‘𝑅))
179lidlsubg 14042 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1816, 17syldan 282 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
19 eqid 2196 . . . 4 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
203, 19eqger 13354 . . 3 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
2118, 20syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
22 ringabl 13588 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2322adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
24 ablnsg 13464 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
2523, 24syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
2618, 25eleqtrrd 2276 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
273, 19, 5eqgcpbl 13358 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
2826, 27syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
293, 19, 12, 62idlcpbl 14080 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
30 simpl 109 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
312, 4, 5, 6, 7, 21, 28, 29, 30qusring2 13622 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cin 3156   class class class wbr 4033  cfv 5258  (class class class)co 5922   Er wer 6589  [cec 6590  Basecbs 12678  +gcplusg 12755  .rcmulr 12756   /s cqus 12943  SubGrpcsubg 13297  NrmSGrpcnsg 13298   ~QG cqg 13299  Abelcabl 13415  1rcur 13515  Ringcrg 13552  opprcoppr 13623  LIdealclidl 14023  2Idealc2idl 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-nsg 13301  df-eqg 13302  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-subrg 13775  df-lmod 13845  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025  df-2idl 14056
This theorem is referenced by:  qusring  14083  qusrhm  14084
  Copyright terms: Public domain W3C validator