| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qus1 | GIF version | ||
| Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| qus1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| qus1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 3 | eqid 2196 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) = (Base‘𝑅)) |
| 5 | eqid 2196 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | eqid 2196 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | qus1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 8 | simpr 110 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ 𝐼) | |
| 9 | eqid 2196 | . . . . . . . 8 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 10 | eqid 2196 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 11 | eqid 2196 | . . . . . . . 8 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 12 | qusring.i | . . . . . . . 8 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 13 | 9, 10, 11, 12 | 2idlvalg 14135 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 14 | 13 | adantr 276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 15 | 8, 14 | eleqtrd 2275 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 16 | 15 | elin1d 3353 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (LIdeal‘𝑅)) |
| 17 | 9 | lidlsubg 14118 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 18 | 16, 17 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 19 | eqid 2196 | . . . 4 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
| 20 | 3, 19 | eqger 13430 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 21 | 18, 20 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 22 | ringabl 13664 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
| 23 | 22 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 24 | ablnsg 13540 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
| 25 | 23, 24 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 26 | 18, 25 | eleqtrrd 2276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 27 | 3, 19, 5 | eqgcpbl 13434 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 28 | 26, 27 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 29 | 3, 19, 12, 6 | 2idlcpbl 14156 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 30 | simpl 109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
| 31 | 2, 4, 5, 6, 7, 21, 28, 29, 30 | qusring2 13698 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∩ cin 3156 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 Er wer 6598 [cec 6599 Basecbs 12703 +gcplusg 12780 .rcmulr 12781 /s cqus 13002 SubGrpcsubg 13373 NrmSGrpcnsg 13374 ~QG cqg 13375 Abelcabl 13491 1rcur 13591 Ringcrg 13628 opprcoppr 13699 LIdealclidl 14099 2Idealc2idl 14131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-tpos 6312 df-er 6601 df-ec 6603 df-qs 6607 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-0g 12960 df-iimas 13004 df-qus 13005 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-subg 13376 df-nsg 13377 df-eqg 13378 df-cmn 13492 df-abl 13493 df-mgp 13553 df-rng 13565 df-ur 13592 df-srg 13596 df-ring 13630 df-oppr 13700 df-subrg 13851 df-lmod 13921 df-lssm 13985 df-sra 14067 df-rgmod 14068 df-lidl 14101 df-2idl 14132 |
| This theorem is referenced by: qusring 14159 qusrhm 14160 |
| Copyright terms: Public domain | W3C validator |