| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qus1 | GIF version | ||
| Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| qus1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| qus1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 3 | eqid 2229 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) = (Base‘𝑅)) |
| 5 | eqid 2229 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | eqid 2229 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | qus1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 8 | simpr 110 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ 𝐼) | |
| 9 | eqid 2229 | . . . . . . . 8 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 10 | eqid 2229 | . . . . . . . 8 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 11 | eqid 2229 | . . . . . . . 8 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 12 | qusring.i | . . . . . . . 8 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 13 | 9, 10, 11, 12 | 2idlvalg 14461 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 14 | 13 | adantr 276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 15 | 8, 14 | eleqtrd 2308 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 16 | 15 | elin1d 3393 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (LIdeal‘𝑅)) |
| 17 | 9 | lidlsubg 14444 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 18 | 16, 17 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 19 | eqid 2229 | . . . 4 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
| 20 | 3, 19 | eqger 13756 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 21 | 18, 20 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 22 | ringabl 13990 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
| 23 | 22 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 24 | ablnsg 13866 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
| 25 | 23, 24 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 26 | 18, 25 | eleqtrrd 2309 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 27 | 3, 19, 5 | eqgcpbl 13760 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 28 | 26, 27 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 29 | 3, 19, 12, 6 | 2idlcpbl 14482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 30 | simpl 109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
| 31 | 2, 4, 5, 6, 7, 21, 28, 29, 30 | qusring2 14024 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 Er wer 6675 [cec 6676 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 /s cqus 13328 SubGrpcsubg 13699 NrmSGrpcnsg 13700 ~QG cqg 13701 Abelcabl 13817 1rcur 13917 Ringcrg 13954 opprcoppr 14025 LIdealclidl 14425 2Idealc2idl 14457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-tpos 6389 df-er 6678 df-ec 6680 df-qs 6684 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-ip 13123 df-0g 13286 df-iimas 13330 df-qus 13331 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-sbg 13533 df-subg 13702 df-nsg 13703 df-eqg 13704 df-cmn 13818 df-abl 13819 df-mgp 13879 df-rng 13891 df-ur 13918 df-srg 13922 df-ring 13956 df-oppr 14026 df-subrg 14177 df-lmod 14247 df-lssm 14311 df-sra 14393 df-rgmod 14394 df-lidl 14427 df-2idl 14458 |
| This theorem is referenced by: qusring 14485 qusrhm 14486 |
| Copyright terms: Public domain | W3C validator |