ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus1 GIF version

Theorem qus1 14230
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qus1.o 1 = (1r𝑅)
Assertion
Ref Expression
qus1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))

Proof of Theorem qus1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
21a1i 9 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
3 eqid 2204 . . 3 (Base‘𝑅) = (Base‘𝑅)
43a1i 9 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
5 eqid 2204 . 2 (+g𝑅) = (+g𝑅)
6 eqid 2204 . 2 (.r𝑅) = (.r𝑅)
7 qus1.o . 2 1 = (1r𝑅)
8 simpr 110 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆𝐼)
9 eqid 2204 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
10 eqid 2204 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
11 eqid 2204 . . . . . . . 8 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
12 qusring.i . . . . . . . 8 𝐼 = (2Ideal‘𝑅)
139, 10, 11, 122idlvalg 14207 . . . . . . 7 (𝑅 ∈ Ring → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
1413adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
158, 14eleqtrd 2283 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
1615elin1d 3361 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (LIdeal‘𝑅))
179lidlsubg 14190 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1816, 17syldan 282 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
19 eqid 2204 . . . 4 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
203, 19eqger 13502 . . 3 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
2118, 20syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
22 ringabl 13736 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2322adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
24 ablnsg 13612 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
2523, 24syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
2618, 25eleqtrrd 2284 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
273, 19, 5eqgcpbl 13506 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
2826, 27syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
293, 19, 12, 62idlcpbl 14228 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
30 simpl 109 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
312, 4, 5, 6, 7, 21, 28, 29, 30qusring2 13770 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cin 3164   class class class wbr 4043  cfv 5270  (class class class)co 5943   Er wer 6616  [cec 6617  Basecbs 12774  +gcplusg 12851  .rcmulr 12852   /s cqus 13074  SubGrpcsubg 13445  NrmSGrpcnsg 13446   ~QG cqg 13447  Abelcabl 13563  1rcur 13663  Ringcrg 13700  opprcoppr 13771  LIdealclidl 14171  2Idealc2idl 14203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-er 6619  df-ec 6621  df-qs 6625  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-ip 12869  df-0g 13032  df-iimas 13076  df-qus 13077  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-subg 13448  df-nsg 13449  df-eqg 13450  df-cmn 13564  df-abl 13565  df-mgp 13625  df-rng 13637  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-subrg 13923  df-lmod 13993  df-lssm 14057  df-sra 14139  df-rgmod 14140  df-lidl 14173  df-2idl 14204
This theorem is referenced by:  qusring  14231  qusrhm  14232
  Copyright terms: Public domain W3C validator