![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnindnn | GIF version |
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8594 designed for real number axioms which involve natural numbers (notably, axcaucvg 7585). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nntopi.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
nnindnn.1 | ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) |
nnindnn.y | ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) |
nnindnn.y1 | ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
nnindnn.a | ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) |
nnindnn.basis | ⊢ 𝜓 |
nnindnn.step | ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nnindnn | ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntopi.n | . . . . . . 7 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | peano1nnnn 7539 | . . . . . 6 ⊢ 1 ∈ 𝑁 |
3 | nnindnn.basis | . . . . . 6 ⊢ 𝜓 | |
4 | nnindnn.1 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) | |
5 | 4 | elrab 2793 | . . . . . 6 ⊢ (1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (1 ∈ 𝑁 ∧ 𝜓)) |
6 | 2, 3, 5 | mpbir2an 894 | . . . . 5 ⊢ 1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
7 | elrabi 2790 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → 𝑘 ∈ 𝑁) | |
8 | 1 | peano2nnnn 7540 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁) |
9 | 8 | a1d 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁)) |
10 | nnindnn.step | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) | |
11 | 9, 10 | anim12d 331 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑁 → ((𝑘 ∈ 𝑁 ∧ 𝜒) → ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃))) |
12 | nnindnn.y | . . . . . . . . 9 ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) | |
13 | 12 | elrab 2793 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝑘 ∈ 𝑁 ∧ 𝜒)) |
14 | nnindnn.y1 | . . . . . . . . 9 ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
15 | 14 | elrab 2793 | . . . . . . . 8 ⊢ ((𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃)) |
16 | 11, 13, 15 | 3imtr4g 204 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑})) |
17 | 7, 16 | mpcom 36 | . . . . . 6 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
18 | 17 | rgen 2444 | . . . . 5 ⊢ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
19 | 1 | peano5nnnn 7577 | . . . . 5 ⊢ ((1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) → 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
20 | 6, 18, 19 | mp2an 420 | . . . 4 ⊢ 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑} |
21 | 20 | sseli 3043 | . . 3 ⊢ (𝐴 ∈ 𝑁 → 𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
22 | nnindnn.a | . . . 4 ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) | |
23 | 22 | elrab 2793 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝐴 ∈ 𝑁 ∧ 𝜏)) |
24 | 21, 23 | sylib 121 | . 2 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ∧ 𝜏)) |
25 | 24 | simprd 113 | 1 ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1299 ∈ wcel 1448 {cab 2086 ∀wral 2375 {crab 2379 ⊆ wss 3021 ∩ cint 3718 (class class class)co 5706 1c1 7501 + caddc 7503 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-1o 6243 df-2o 6244 df-oadd 6247 df-omul 6248 df-er 6359 df-ec 6361 df-qs 6365 df-ni 7013 df-pli 7014 df-mi 7015 df-lti 7016 df-plpq 7053 df-mpq 7054 df-enq 7056 df-nqqs 7057 df-plqqs 7058 df-mqqs 7059 df-1nqqs 7060 df-rq 7061 df-ltnqqs 7062 df-enq0 7133 df-nq0 7134 df-0nq0 7135 df-plq0 7136 df-mq0 7137 df-inp 7175 df-i1p 7176 df-iplp 7177 df-enr 7422 df-nr 7423 df-plr 7424 df-0r 7427 df-1r 7428 df-c 7506 df-1 7508 df-r 7510 df-add 7511 |
This theorem is referenced by: nntopi 7579 |
Copyright terms: Public domain | W3C validator |