ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindnn GIF version

Theorem nnindnn 7960
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9006 designed for real number axioms which involve natural numbers (notably, axcaucvg 7967). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
nnindnn.1 (𝑧 = 1 → (𝜑𝜓))
nnindnn.y (𝑧 = 𝑘 → (𝜑𝜒))
nnindnn.y1 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
nnindnn.a (𝑧 = 𝐴 → (𝜑𝜏))
nnindnn.basis 𝜓
nnindnn.step (𝑘𝑁 → (𝜒𝜃))
Assertion
Ref Expression
nnindnn (𝐴𝑁𝜏)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑘   𝑧,𝐴   𝜓,𝑧   𝜒,𝑧   𝜃,𝑧   𝜏,𝑧   𝜑,𝑘   𝑘,𝑁,𝑦,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦,𝑘)   𝜒(𝑥,𝑦,𝑘)   𝜃(𝑥,𝑦,𝑘)   𝜏(𝑥,𝑦,𝑘)   𝐴(𝑥,𝑦,𝑘)

Proof of Theorem nnindnn
StepHypRef Expression
1 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21peano1nnnn 7919 . . . . . 6 1 ∈ 𝑁
3 nnindnn.basis . . . . . 6 𝜓
4 nnindnn.1 . . . . . . 7 (𝑧 = 1 → (𝜑𝜓))
54elrab 2920 . . . . . 6 (1 ∈ {𝑧𝑁𝜑} ↔ (1 ∈ 𝑁𝜓))
62, 3, 5mpbir2an 944 . . . . 5 1 ∈ {𝑧𝑁𝜑}
7 elrabi 2917 . . . . . . 7 (𝑘 ∈ {𝑧𝑁𝜑} → 𝑘𝑁)
81peano2nnnn 7920 . . . . . . . . . 10 (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁)
98a1d 22 . . . . . . . . 9 (𝑘𝑁 → (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁))
10 nnindnn.step . . . . . . . . 9 (𝑘𝑁 → (𝜒𝜃))
119, 10anim12d 335 . . . . . . . 8 (𝑘𝑁 → ((𝑘𝑁𝜒) → ((𝑘 + 1) ∈ 𝑁𝜃)))
12 nnindnn.y . . . . . . . . 9 (𝑧 = 𝑘 → (𝜑𝜒))
1312elrab 2920 . . . . . . . 8 (𝑘 ∈ {𝑧𝑁𝜑} ↔ (𝑘𝑁𝜒))
14 nnindnn.y1 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
1514elrab 2920 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑧𝑁𝜑} ↔ ((𝑘 + 1) ∈ 𝑁𝜃))
1611, 13, 153imtr4g 205 . . . . . . 7 (𝑘𝑁 → (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑}))
177, 16mpcom 36 . . . . . 6 (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑})
1817rgen 2550 . . . . 5 𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}
191peano5nnnn 7959 . . . . 5 ((1 ∈ {𝑧𝑁𝜑} ∧ ∀𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}) → 𝑁 ⊆ {𝑧𝑁𝜑})
206, 18, 19mp2an 426 . . . 4 𝑁 ⊆ {𝑧𝑁𝜑}
2120sseli 3179 . . 3 (𝐴𝑁𝐴 ∈ {𝑧𝑁𝜑})
22 nnindnn.a . . . 4 (𝑧 = 𝐴 → (𝜑𝜏))
2322elrab 2920 . . 3 (𝐴 ∈ {𝑧𝑁𝜑} ↔ (𝐴𝑁𝜏))
2421, 23sylib 122 . 2 (𝐴𝑁 → (𝐴𝑁𝜏))
2524simprd 114 1 (𝐴𝑁𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  {crab 2479  wss 3157   cint 3874  (class class class)co 5922  1c1 7880   + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-enr 7793  df-nr 7794  df-plr 7795  df-0r 7798  df-1r 7799  df-c 7885  df-1 7887  df-r 7889  df-add 7890
This theorem is referenced by:  nntopi  7961
  Copyright terms: Public domain W3C validator