![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnindnn | GIF version |
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9000 designed for real number axioms which involve natural numbers (notably, axcaucvg 7962). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nntopi.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
nnindnn.1 | ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) |
nnindnn.y | ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) |
nnindnn.y1 | ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
nnindnn.a | ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) |
nnindnn.basis | ⊢ 𝜓 |
nnindnn.step | ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nnindnn | ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntopi.n | . . . . . . 7 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | peano1nnnn 7914 | . . . . . 6 ⊢ 1 ∈ 𝑁 |
3 | nnindnn.basis | . . . . . 6 ⊢ 𝜓 | |
4 | nnindnn.1 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) | |
5 | 4 | elrab 2917 | . . . . . 6 ⊢ (1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (1 ∈ 𝑁 ∧ 𝜓)) |
6 | 2, 3, 5 | mpbir2an 944 | . . . . 5 ⊢ 1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
7 | elrabi 2914 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → 𝑘 ∈ 𝑁) | |
8 | 1 | peano2nnnn 7915 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁) |
9 | 8 | a1d 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁)) |
10 | nnindnn.step | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) | |
11 | 9, 10 | anim12d 335 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑁 → ((𝑘 ∈ 𝑁 ∧ 𝜒) → ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃))) |
12 | nnindnn.y | . . . . . . . . 9 ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) | |
13 | 12 | elrab 2917 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝑘 ∈ 𝑁 ∧ 𝜒)) |
14 | nnindnn.y1 | . . . . . . . . 9 ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
15 | 14 | elrab 2917 | . . . . . . . 8 ⊢ ((𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃)) |
16 | 11, 13, 15 | 3imtr4g 205 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑})) |
17 | 7, 16 | mpcom 36 | . . . . . 6 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
18 | 17 | rgen 2547 | . . . . 5 ⊢ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
19 | 1 | peano5nnnn 7954 | . . . . 5 ⊢ ((1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) → 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
20 | 6, 18, 19 | mp2an 426 | . . . 4 ⊢ 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑} |
21 | 20 | sseli 3176 | . . 3 ⊢ (𝐴 ∈ 𝑁 → 𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
22 | nnindnn.a | . . . 4 ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) | |
23 | 22 | elrab 2917 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝐴 ∈ 𝑁 ∧ 𝜏)) |
24 | 21, 23 | sylib 122 | . 2 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ∧ 𝜏)) |
25 | 24 | simprd 114 | 1 ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 {crab 2476 ⊆ wss 3154 ∩ cint 3871 (class class class)co 5919 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-enr 7788 df-nr 7789 df-plr 7790 df-0r 7793 df-1r 7794 df-c 7880 df-1 7882 df-r 7884 df-add 7885 |
This theorem is referenced by: nntopi 7956 |
Copyright terms: Public domain | W3C validator |