ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindnn GIF version

Theorem nnindnn 7834
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8873 designed for real number axioms which involve natural numbers (notably, axcaucvg 7841). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
nnindnn.1 (𝑧 = 1 → (𝜑𝜓))
nnindnn.y (𝑧 = 𝑘 → (𝜑𝜒))
nnindnn.y1 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
nnindnn.a (𝑧 = 𝐴 → (𝜑𝜏))
nnindnn.basis 𝜓
nnindnn.step (𝑘𝑁 → (𝜒𝜃))
Assertion
Ref Expression
nnindnn (𝐴𝑁𝜏)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑘   𝑧,𝐴   𝜓,𝑧   𝜒,𝑧   𝜃,𝑧   𝜏,𝑧   𝜑,𝑘   𝑘,𝑁,𝑦,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦,𝑘)   𝜒(𝑥,𝑦,𝑘)   𝜃(𝑥,𝑦,𝑘)   𝜏(𝑥,𝑦,𝑘)   𝐴(𝑥,𝑦,𝑘)

Proof of Theorem nnindnn
StepHypRef Expression
1 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21peano1nnnn 7793 . . . . . 6 1 ∈ 𝑁
3 nnindnn.basis . . . . . 6 𝜓
4 nnindnn.1 . . . . . . 7 (𝑧 = 1 → (𝜑𝜓))
54elrab 2882 . . . . . 6 (1 ∈ {𝑧𝑁𝜑} ↔ (1 ∈ 𝑁𝜓))
62, 3, 5mpbir2an 932 . . . . 5 1 ∈ {𝑧𝑁𝜑}
7 elrabi 2879 . . . . . . 7 (𝑘 ∈ {𝑧𝑁𝜑} → 𝑘𝑁)
81peano2nnnn 7794 . . . . . . . . . 10 (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁)
98a1d 22 . . . . . . . . 9 (𝑘𝑁 → (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁))
10 nnindnn.step . . . . . . . . 9 (𝑘𝑁 → (𝜒𝜃))
119, 10anim12d 333 . . . . . . . 8 (𝑘𝑁 → ((𝑘𝑁𝜒) → ((𝑘 + 1) ∈ 𝑁𝜃)))
12 nnindnn.y . . . . . . . . 9 (𝑧 = 𝑘 → (𝜑𝜒))
1312elrab 2882 . . . . . . . 8 (𝑘 ∈ {𝑧𝑁𝜑} ↔ (𝑘𝑁𝜒))
14 nnindnn.y1 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
1514elrab 2882 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑧𝑁𝜑} ↔ ((𝑘 + 1) ∈ 𝑁𝜃))
1611, 13, 153imtr4g 204 . . . . . . 7 (𝑘𝑁 → (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑}))
177, 16mpcom 36 . . . . . 6 (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑})
1817rgen 2519 . . . . 5 𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}
191peano5nnnn 7833 . . . . 5 ((1 ∈ {𝑧𝑁𝜑} ∧ ∀𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}) → 𝑁 ⊆ {𝑧𝑁𝜑})
206, 18, 19mp2an 423 . . . 4 𝑁 ⊆ {𝑧𝑁𝜑}
2120sseli 3138 . . 3 (𝐴𝑁𝐴 ∈ {𝑧𝑁𝜑})
22 nnindnn.a . . . 4 (𝑧 = 𝐴 → (𝜑𝜏))
2322elrab 2882 . . 3 (𝐴 ∈ {𝑧𝑁𝜑} ↔ (𝐴𝑁𝜏))
2421, 23sylib 121 . 2 (𝐴𝑁 → (𝐴𝑁𝜏))
2524simprd 113 1 (𝐴𝑁𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  {crab 2448  wss 3116   cint 3824  (class class class)co 5842  1c1 7754   + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-enr 7667  df-nr 7668  df-plr 7669  df-0r 7672  df-1r 7673  df-c 7759  df-1 7761  df-r 7763  df-add 7764
This theorem is referenced by:  nntopi  7835
  Copyright terms: Public domain W3C validator