| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnindnn | GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9122 designed for real number axioms which involve natural numbers (notably, axcaucvg 8083). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nntopi.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| nnindnn.1 | ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) |
| nnindnn.y | ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) |
| nnindnn.y1 | ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
| nnindnn.a | ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nnindnn.basis | ⊢ 𝜓 |
| nnindnn.step | ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nnindnn | ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nntopi.n | . . . . . . 7 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | 1 | peano1nnnn 8035 | . . . . . 6 ⊢ 1 ∈ 𝑁 |
| 3 | nnindnn.basis | . . . . . 6 ⊢ 𝜓 | |
| 4 | nnindnn.1 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | elrab 2959 | . . . . . 6 ⊢ (1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (1 ∈ 𝑁 ∧ 𝜓)) |
| 6 | 2, 3, 5 | mpbir2an 948 | . . . . 5 ⊢ 1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
| 7 | elrabi 2956 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → 𝑘 ∈ 𝑁) | |
| 8 | 1 | peano2nnnn 8036 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁) |
| 9 | 8 | a1d 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁)) |
| 10 | nnindnn.step | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) | |
| 11 | 9, 10 | anim12d 335 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑁 → ((𝑘 ∈ 𝑁 ∧ 𝜒) → ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃))) |
| 12 | nnindnn.y | . . . . . . . . 9 ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) | |
| 13 | 12 | elrab 2959 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝑘 ∈ 𝑁 ∧ 𝜒)) |
| 14 | nnindnn.y1 | . . . . . . . . 9 ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
| 15 | 14 | elrab 2959 | . . . . . . . 8 ⊢ ((𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃)) |
| 16 | 11, 13, 15 | 3imtr4g 205 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑})) |
| 17 | 7, 16 | mpcom 36 | . . . . . 6 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
| 18 | 17 | rgen 2583 | . . . . 5 ⊢ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
| 19 | 1 | peano5nnnn 8075 | . . . . 5 ⊢ ((1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) → 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
| 20 | 6, 18, 19 | mp2an 426 | . . . 4 ⊢ 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑} |
| 21 | 20 | sseli 3220 | . . 3 ⊢ (𝐴 ∈ 𝑁 → 𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
| 22 | nnindnn.a | . . . 4 ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 23 | 22 | elrab 2959 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝐴 ∈ 𝑁 ∧ 𝜏)) |
| 24 | 21, 23 | sylib 122 | . 2 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ∧ 𝜏)) |
| 25 | 24 | simprd 114 | 1 ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 {crab 2512 ⊆ wss 3197 ∩ cint 3922 (class class class)co 6000 1c1 7996 + caddc 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-enr 7909 df-nr 7910 df-plr 7911 df-0r 7914 df-1r 7915 df-c 8001 df-1 8003 df-r 8005 df-add 8006 |
| This theorem is referenced by: nntopi 8077 |
| Copyright terms: Public domain | W3C validator |