Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnindnn | GIF version |
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8894 designed for real number axioms which involve natural numbers (notably, axcaucvg 7862). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nntopi.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
nnindnn.1 | ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) |
nnindnn.y | ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) |
nnindnn.y1 | ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
nnindnn.a | ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) |
nnindnn.basis | ⊢ 𝜓 |
nnindnn.step | ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nnindnn | ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntopi.n | . . . . . . 7 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | peano1nnnn 7814 | . . . . . 6 ⊢ 1 ∈ 𝑁 |
3 | nnindnn.basis | . . . . . 6 ⊢ 𝜓 | |
4 | nnindnn.1 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) | |
5 | 4 | elrab 2886 | . . . . . 6 ⊢ (1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (1 ∈ 𝑁 ∧ 𝜓)) |
6 | 2, 3, 5 | mpbir2an 937 | . . . . 5 ⊢ 1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
7 | elrabi 2883 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → 𝑘 ∈ 𝑁) | |
8 | 1 | peano2nnnn 7815 | . . . . . . . . . 10 ⊢ (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁) |
9 | 8 | a1d 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ 𝑁 → (𝑘 + 1) ∈ 𝑁)) |
10 | nnindnn.step | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) | |
11 | 9, 10 | anim12d 333 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑁 → ((𝑘 ∈ 𝑁 ∧ 𝜒) → ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃))) |
12 | nnindnn.y | . . . . . . . . 9 ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) | |
13 | 12 | elrab 2886 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝑘 ∈ 𝑁 ∧ 𝜒)) |
14 | nnindnn.y1 | . . . . . . . . 9 ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
15 | 14 | elrab 2886 | . . . . . . . 8 ⊢ ((𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ ((𝑘 + 1) ∈ 𝑁 ∧ 𝜃)) |
16 | 11, 13, 15 | 3imtr4g 204 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑁 → (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑})) |
17 | 7, 16 | mpcom 36 | . . . . . 6 ⊢ (𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} → (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
18 | 17 | rgen 2523 | . . . . 5 ⊢ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} |
19 | 1 | peano5nnnn 7854 | . . . . 5 ⊢ ((1 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} (𝑘 + 1) ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) → 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
20 | 6, 18, 19 | mp2an 424 | . . . 4 ⊢ 𝑁 ⊆ {𝑧 ∈ 𝑁 ∣ 𝜑} |
21 | 20 | sseli 3143 | . . 3 ⊢ (𝐴 ∈ 𝑁 → 𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑}) |
22 | nnindnn.a | . . . 4 ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) | |
23 | 22 | elrab 2886 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∈ 𝑁 ∣ 𝜑} ↔ (𝐴 ∈ 𝑁 ∧ 𝜏)) |
24 | 21, 23 | sylib 121 | . 2 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ∧ 𝜏)) |
25 | 24 | simprd 113 | 1 ⊢ (𝐴 ∈ 𝑁 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 {crab 2452 ⊆ wss 3121 ∩ cint 3831 (class class class)co 5853 1c1 7775 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-enr 7688 df-nr 7689 df-plr 7690 df-0r 7693 df-1r 7694 df-c 7780 df-1 7782 df-r 7784 df-add 7785 |
This theorem is referenced by: nntopi 7856 |
Copyright terms: Public domain | W3C validator |