ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindnn GIF version

Theorem nnindnn 7955
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9000 designed for real number axioms which involve natural numbers (notably, axcaucvg 7962). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
nnindnn.1 (𝑧 = 1 → (𝜑𝜓))
nnindnn.y (𝑧 = 𝑘 → (𝜑𝜒))
nnindnn.y1 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
nnindnn.a (𝑧 = 𝐴 → (𝜑𝜏))
nnindnn.basis 𝜓
nnindnn.step (𝑘𝑁 → (𝜒𝜃))
Assertion
Ref Expression
nnindnn (𝐴𝑁𝜏)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑘   𝑧,𝐴   𝜓,𝑧   𝜒,𝑧   𝜃,𝑧   𝜏,𝑧   𝜑,𝑘   𝑘,𝑁,𝑦,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦,𝑘)   𝜒(𝑥,𝑦,𝑘)   𝜃(𝑥,𝑦,𝑘)   𝜏(𝑥,𝑦,𝑘)   𝐴(𝑥,𝑦,𝑘)

Proof of Theorem nnindnn
StepHypRef Expression
1 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21peano1nnnn 7914 . . . . . 6 1 ∈ 𝑁
3 nnindnn.basis . . . . . 6 𝜓
4 nnindnn.1 . . . . . . 7 (𝑧 = 1 → (𝜑𝜓))
54elrab 2917 . . . . . 6 (1 ∈ {𝑧𝑁𝜑} ↔ (1 ∈ 𝑁𝜓))
62, 3, 5mpbir2an 944 . . . . 5 1 ∈ {𝑧𝑁𝜑}
7 elrabi 2914 . . . . . . 7 (𝑘 ∈ {𝑧𝑁𝜑} → 𝑘𝑁)
81peano2nnnn 7915 . . . . . . . . . 10 (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁)
98a1d 22 . . . . . . . . 9 (𝑘𝑁 → (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁))
10 nnindnn.step . . . . . . . . 9 (𝑘𝑁 → (𝜒𝜃))
119, 10anim12d 335 . . . . . . . 8 (𝑘𝑁 → ((𝑘𝑁𝜒) → ((𝑘 + 1) ∈ 𝑁𝜃)))
12 nnindnn.y . . . . . . . . 9 (𝑧 = 𝑘 → (𝜑𝜒))
1312elrab 2917 . . . . . . . 8 (𝑘 ∈ {𝑧𝑁𝜑} ↔ (𝑘𝑁𝜒))
14 nnindnn.y1 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
1514elrab 2917 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑧𝑁𝜑} ↔ ((𝑘 + 1) ∈ 𝑁𝜃))
1611, 13, 153imtr4g 205 . . . . . . 7 (𝑘𝑁 → (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑}))
177, 16mpcom 36 . . . . . 6 (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑})
1817rgen 2547 . . . . 5 𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}
191peano5nnnn 7954 . . . . 5 ((1 ∈ {𝑧𝑁𝜑} ∧ ∀𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}) → 𝑁 ⊆ {𝑧𝑁𝜑})
206, 18, 19mp2an 426 . . . 4 𝑁 ⊆ {𝑧𝑁𝜑}
2120sseli 3176 . . 3 (𝐴𝑁𝐴 ∈ {𝑧𝑁𝜑})
22 nnindnn.a . . . 4 (𝑧 = 𝐴 → (𝜑𝜏))
2322elrab 2917 . . 3 (𝐴 ∈ {𝑧𝑁𝜑} ↔ (𝐴𝑁𝜏))
2421, 23sylib 122 . 2 (𝐴𝑁 → (𝐴𝑁𝜏))
2524simprd 114 1 (𝐴𝑁𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  {crab 2476  wss 3154   cint 3871  (class class class)co 5919  1c1 7875   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790  df-0r 7793  df-1r 7794  df-c 7880  df-1 7882  df-r 7884  df-add 7885
This theorem is referenced by:  nntopi  7956
  Copyright terms: Public domain W3C validator