ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindnn GIF version

Theorem nnindnn 7407
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8410 designed for real number axioms which involve natural numbers (notably, axcaucvg 7414). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
nnindnn.1 (𝑧 = 1 → (𝜑𝜓))
nnindnn.y (𝑧 = 𝑘 → (𝜑𝜒))
nnindnn.y1 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
nnindnn.a (𝑧 = 𝐴 → (𝜑𝜏))
nnindnn.basis 𝜓
nnindnn.step (𝑘𝑁 → (𝜒𝜃))
Assertion
Ref Expression
nnindnn (𝐴𝑁𝜏)
Distinct variable groups:   𝑥,𝑦   𝑧,𝑘   𝑧,𝐴   𝜓,𝑧   𝜒,𝑧   𝜃,𝑧   𝜏,𝑧   𝜑,𝑘   𝑘,𝑁,𝑦,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦,𝑘)   𝜒(𝑥,𝑦,𝑘)   𝜃(𝑥,𝑦,𝑘)   𝜏(𝑥,𝑦,𝑘)   𝐴(𝑥,𝑦,𝑘)

Proof of Theorem nnindnn
StepHypRef Expression
1 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21peano1nnnn 7368 . . . . . 6 1 ∈ 𝑁
3 nnindnn.basis . . . . . 6 𝜓
4 nnindnn.1 . . . . . . 7 (𝑧 = 1 → (𝜑𝜓))
54elrab 2769 . . . . . 6 (1 ∈ {𝑧𝑁𝜑} ↔ (1 ∈ 𝑁𝜓))
62, 3, 5mpbir2an 888 . . . . 5 1 ∈ {𝑧𝑁𝜑}
7 elrabi 2766 . . . . . . 7 (𝑘 ∈ {𝑧𝑁𝜑} → 𝑘𝑁)
81peano2nnnn 7369 . . . . . . . . . 10 (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁)
98a1d 22 . . . . . . . . 9 (𝑘𝑁 → (𝑘𝑁 → (𝑘 + 1) ∈ 𝑁))
10 nnindnn.step . . . . . . . . 9 (𝑘𝑁 → (𝜒𝜃))
119, 10anim12d 328 . . . . . . . 8 (𝑘𝑁 → ((𝑘𝑁𝜒) → ((𝑘 + 1) ∈ 𝑁𝜃)))
12 nnindnn.y . . . . . . . . 9 (𝑧 = 𝑘 → (𝜑𝜒))
1312elrab 2769 . . . . . . . 8 (𝑘 ∈ {𝑧𝑁𝜑} ↔ (𝑘𝑁𝜒))
14 nnindnn.y1 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → (𝜑𝜃))
1514elrab 2769 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑧𝑁𝜑} ↔ ((𝑘 + 1) ∈ 𝑁𝜃))
1611, 13, 153imtr4g 203 . . . . . . 7 (𝑘𝑁 → (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑}))
177, 16mpcom 36 . . . . . 6 (𝑘 ∈ {𝑧𝑁𝜑} → (𝑘 + 1) ∈ {𝑧𝑁𝜑})
1817rgen 2428 . . . . 5 𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}
191peano5nnnn 7406 . . . . 5 ((1 ∈ {𝑧𝑁𝜑} ∧ ∀𝑘 ∈ {𝑧𝑁𝜑} (𝑘 + 1) ∈ {𝑧𝑁𝜑}) → 𝑁 ⊆ {𝑧𝑁𝜑})
206, 18, 19mp2an 417 . . . 4 𝑁 ⊆ {𝑧𝑁𝜑}
2120sseli 3019 . . 3 (𝐴𝑁𝐴 ∈ {𝑧𝑁𝜑})
22 nnindnn.a . . . 4 (𝑧 = 𝐴 → (𝜑𝜏))
2322elrab 2769 . . 3 (𝐴 ∈ {𝑧𝑁𝜑} ↔ (𝐴𝑁𝜏))
2421, 23sylib 120 . 2 (𝐴𝑁 → (𝐴𝑁𝜏))
2524simprd 112 1 (𝐴𝑁𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  {cab 2074  wral 2359  {crab 2363  wss 2997   cint 3683  (class class class)co 5634  1c1 7330   + caddc 7332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965  df-mq0 6966  df-inp 7004  df-i1p 7005  df-iplp 7006  df-enr 7251  df-nr 7252  df-plr 7253  df-0r 7256  df-1r 7257  df-c 7335  df-1 7337  df-r 7339  df-add 7340
This theorem is referenced by:  nntopi  7408
  Copyright terms: Public domain W3C validator