| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgredg | GIF version | ||
| Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgredg | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | eleq2i 2273 | . . . 4 ⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) |
| 3 | edgumgren 15816 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o)) | |
| 4 | 2, 3 | sylan2b 287 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o)) |
| 5 | en2prde 7322 | . . . . 5 ⊢ (𝐶 ≈ 2o → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
| 7 | eleq1 2269 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺))) | |
| 8 | zfpair2 4265 | . . . . . . . . . . . 12 ⊢ {𝑎, 𝑏} ∈ V | |
| 9 | 8 | elpw 3627 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
| 10 | vex 2776 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
| 11 | vex 2776 | . . . . . . . . . . . . 13 ⊢ 𝑏 ∈ V | |
| 12 | 10, 11 | prss 3795 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉) |
| 13 | upgredg.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 14 | 13 | sseq2i 3224 | . . . . . . . . . . . 12 ⊢ ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
| 15 | 12, 14 | sylbbr 136 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 16 | 9, 15 | sylbi 121 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 17 | 7, 16 | biimtrdi 163 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 18 | 17 | adantrd 279 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 19 | 18 | adantl 277 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 20 | 19 | imdistanri 446 | . . . . . 6 ⊢ (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
| 21 | 20 | ex 115 | . . . . 5 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) → ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
| 22 | 21 | 2eximdv 1906 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
| 23 | 6, 22 | mpd 13 | . . 3 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐶 ≈ 2o) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
| 24 | 4, 23 | syl 14 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
| 25 | r2ex 2527 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) | |
| 26 | 24, 25 | sylibr 134 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ≠ wne 2377 ∃wrex 2486 ⊆ wss 3170 𝒫 cpw 3621 {cpr 3639 class class class wbr 4054 ‘cfv 5285 2oc2o 6514 ≈ cen 6843 Vtxcvtx 15696 Edgcedg 15739 UMGraphcumgr 15773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 df-ndx 12920 df-slot 12921 df-base 12923 df-edgf 15689 df-vtx 15698 df-iedg 15699 df-edg 15740 df-umgren 15775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |